上海花千坊

整式的加减初中数学教案

时间:2022-12-28 19:11:27 初中数学教案 我要投稿
  • 相关推荐

整式的加减初中数学教案

  作为一名老师,就难以避免地要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。那要怎么写好教案呢?以下是小编收集整理的整式的加减初中数学教案,仅供参考,希望能够帮助到大家。

整式的加减初中数学教案

  整式的加减初中数学教案 篇1

  一、教材分析

  本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

  二、设计思想

  本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

  八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

  三、教学目标:

  (一)知识技能目标:

  1、理解同类项的含义,并能辨别同类项。

  2、掌握合并同类项的方法,熟练的合并同类项。

  3、掌握整式加减运算的方法,熟练进行运算。

  (二)过程方法目标:

  1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

  2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

  3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

  (三)情感价值目标:

  1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的'精神。

  2、通过学习活动培养学生科学、严谨的学习态度。

  四、教学重、难点:

  合并同类项

  五、教学关键:

  同类项的概念

  六、教学准备:

  教师:

  1、筛选数学题目,精心设置问题情境。

  2、制作大小不等的两个长方体纸盒实物模型,并能展开。

  3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

  学生:

  1、复习有关单项式的概念、有理数四则运算及去括号的法则。

  2、每小组制作大小不等的两个长方体纸盒模型。

  整式的加减初中数学教案 篇2

  教学目标

  1.知识与技能

  能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

  2.过程与方法

  经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

  3.情感态度与价值观

  培养学生主动探究、合作交流的意识,严谨治学的学习态度。

  重、难点与关键

  1.重点:去括号法则,准确应用法则将整式化简。

  2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。

  3.关键:准确理解去括号法则。

  教具准备

  投影仪。

  教学过程

  一、新授

  利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

  现在我们来看本章引言中的问题(3):

  在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

  100t+120(t-0.5)千米①

  冻土地段与非冻土地段相差

  100t-120(t-0.5)千米②

  上面的式子①、②都带有括号,它们应如何化简?

  思路点拨:教师引导,启发学生类比数的.运算,利用分配律。学生练习、交流后,教师归纳:

  利用分配律,可以去括号,合并同类项,得:

  100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

  100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

  我们知道,化简带有括号的整式,首先应先去括号。

  上面两式去括号部分变形分别为:

  +120(t-0.5)=+120t-60③

  -120(t-0.5)=-120+60④

  比较③、④两式,你能发现去括号时符号变化的规律吗?

  思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3)。

  利用分配律,可以将式子中的括号去掉,得:

  +(x-3)=x-3(括号没了,括号内的每一项都没有变号)

  -(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

  去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项。

  二、范例学习

  例1、化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b)。

  思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号。为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号。

  解答过程按课本,可由学生口述,教师板书。

  例2。两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时。

  (1)2小时后两船相距多远?

  (2)2小时后甲船比乙船多航行多少千米?

  教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路。

  思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度。因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米。两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和。

  解答过程按课本。

  去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号。为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号。

  三、巩固练习

  1.课本第68页练习1、2题。

  2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2。[5xy2]

  思路点拨:一般地,先去小括号,再去中括号。

  四、课堂小结

  去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号。去括号规律可以简单记为“-”变“+”不变,要变全都变。当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项。

  五、作业布置

  1.课本第71页习题2.2第2、3、5、8题。

  2.选用课时作业设计。

  整式的加减初中数学教案 篇3

  教学内容:

  教科书第76页,整式的加减单元复习。

  教学目的和要求:

  1、使学生对本章内容的认识更全面、更系统化。

  2、进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。

  3、通过复习,培养学生主动分析问题的习惯。

  教学重点和难点:

  重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。

  难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。

  教学方法:

  分层次教学,讲授、练习相结合。

  教学过程:

  一、复习引入:

  1、主要概念:

  (1)关于单项式,你都知道什么?

  (2)关于多项式,你又知道什么?

  引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。

  (3)什么叫整式?

  在学生回答的基础上,进行归纳、总结,用投影演示:

  整式

  2、主要法则:

  ①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?

  ②在学生回答的基础上,进行归纳总结:

  整式的加减

  二、讲授新课:

  1、例题:

  例1:找出下列代数式中的单项式、多项式和整式。

  ,4xy,,,x2+x+,0,,m,―2.01×105

  解:单项式有4xy,,0,m,―2.01×105;多项式有;

  整式有4xy,,0,m,-2.01×105,。

  此题由学生口答,并说明理由。通过此题,进一步加深学生对于单项式、多项式、整式的定义的理解。

  例2:指出下列单项式的.系数、次数:ab,―x2,xy5,。

  解:ab:系数是1,次数是2;―x2:系数是―1,次数是2;

  xy5:系数是,次数是6;:系数是―,次数是9。

  此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的“+”号或“―”号,次数是“指数之和”。

  例3:指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?

  解:是三次五项式,最高次项有:a3、―a2b、―ab2、b3,常数项是―1。

  例4:化简,并将结果按x的降幂排列:

  (1)(2x4―5x2―4x+1)―(3x3―5x2―3x);

  (2)―[―(―x+)]―(x―1);

  (3)―3(x2―2xy+y2)+(2x2―xy―2y2)。

  解:(1)原式=2x4―3x2―x+1;

  (2)原式=―2x+;

  (3)原式=―x2+xy―4y2。

  通过此题强调:

  (1)去括号(包括去多重括号)的问题;

  (2)数字与多项式相乘时分配律的使用问题。

  例5:化简、求值:5ab―2[3ab―(4ab2+ab)]―5ab2,其中a=,b=―。

  解:化简的结果是:3ab2,求值的结果是。

  例6:一个多项式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求这个多项式,并求当x=―,y=时,这个多项式的值。

  解:此多项式为3x3―5x2y―2y3;值为―。

  3、课堂练习:

  课本p76―77:1,2,3⑴⑶⑸,4⑴⑶⑸⑺,5,7

  四、课堂作业:

  课本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9

  板书设计:

  教学后记:

  ①本节是全章的复习课。首先是复习本章的主要概念和法则。在上节课所留复习作业的基础上,一上课,就进行课堂提问,“关于单项式,你都知道什么”,“关于多项式,你又知道什么”。通过学生的回答,既可检查学生作业完成的情况,又充分地调动学生积极性,使学生主动参与到课堂中来。而且这样的问题具有一定的开放性,可使学生的思维发散,把他们所知道的有关内容都说出来。通过对一个问题的多个侧面地回答,可进一步加深学生对基础知识的理解与重视,又可培养他们主动分析问题的习惯。

  ②对于应该强调的问题,如果只是泛泛而谈,效果不大。因此,在复习了本章的主要知识后,出了一组练习,通过具体的题目,强调有关的问题,将给学生留下更深的印象,学习效果会更好。

【整式的加减初中数学教案】上海花千坊相关的文章:

整式的加减数学教案03-24

整式的加减数学教案7篇04-01

整式的加减数学教案(精选10篇)01-03

初中数学《整式的加减》的教案(精选11篇)01-14

整式的加减复习教案设计(精选10篇)10-26

大班数学教案加减01-02

大班数学教案《5的加减》02-23

大班数学教案:《9的加减》02-24

大班《学习8的加减》数学教案01-28