上海花千坊

八年级数学《勾股定理》教案

时间:2023-08-14 10:00:08 松涛 数学教案 我要投稿

八年级数学《勾股定理》教案(通用10篇)

  在教学工作者实际的教学活动中,时常需要编写教案,借助教案可以有效提升自己的教学能力。那么你有了解过教案吗?以下是小编为大家整理的八年级数学《勾股定理》教案,仅供参考,大家一起来看看吧。

八年级数学《勾股定理》教案(通用10篇)

  八年级数学《勾股定理》教案 1

  教学目标

  1、知识与技能目标

  学会观察图形,勇于探索图形间的关系,培养学生的空间观念.

  2、过程与方法

  (1)经历一般规律的探索过程,发展学生的抽象思维能力.

  (2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

  3、情感态度与价值观

  (1)通过有趣的问题提高学习数学的兴趣.

  (2)在解决实际问题的过程中,体验数学学习的实用性.

  教学重点:

  探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.

  教学难点:

  利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.

  教学准备:

  多媒体

  教学过程:

  第一环节:创设情境,引入新课(3分钟,学生观察、猜想)

  情景:

  如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的.蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?

  第二环节:合作探究(15分钟,学生分组合作探究)

  学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.

  学生汇总了四种方案:

  (1) (2) (3)(4)

  学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.

  学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.

  如图:

  (1)中A→B的路线长为:AA’+d;

  (2)中A→B的路线长为:AA’+A’B>AB;

  (3)中A→B的路线长为:AO+OB>AB;

  (4)中A→B的路线长为:AB.

  得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?

  在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.

  第三环节:做一做(7分钟,学生合作探究)

  教材23页

  李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,

  (1)你能替他想办法完成任务吗?

  (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

  (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

  第四环节:巩固练习(10分钟,学生独立完成)

  1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?

  2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.

  3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?

  第五环节 课堂小结(3分钟,师生问答)

  内容:

  1、如何利用勾股定理及逆定理解决最短路程问题?

  第六 环节:布置作业(2分钟,学生分别记录)

  内容:

  作业:1.课本习题1.5第1,2,3题.

  要求:A组(学优生):1、2、3

  B组(中等生):1、2

  C组(后三分之一生):1

  板书设计:

  教学反思:

  八年级数学《勾股定理》教案 2

  1、勾股定理

  勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.

  即直角三角形两直角的平方和等于斜边的平方.

  因此,在运用勾股定理计算三角形的边长时,要注意如下三点:

  (1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形;

  (2)注意分清斜边和直角边,避免盲目代入公式致错;

  (3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长.即c2=a2+b2,a2=c2-b2,b2=c2-a2.

  2.学会用拼图法验证勾股定理

  拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.

  如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.

  请读者证明.

  如上图示,在图(1)中,利用图1边长为a,b,c的'四个直角三角形拼成的一个以c为边长的正方形,则图2(1)中的小正方形的边长为(b-a),面积为(b-a)2,四个直角三角形的面积为4×ab=2ab.

  由图(1)可知,大正方形的面积=四个直角三角形的面积+小正方形的的面积,即c2=(b-a)2+2ab,则a2+b2=c2问题得证.

  请同学们自己证明图(2)、(3).

  3.在数轴上表示无理数

  将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.

  二、典例精析

  例1如果直角三角形的斜边与一条直角边的长分别是13cm和5cm,那么这个直角三角形的面积是cm2.

  分析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可.根据勾股定理公式的变形,可求得.

  解:由勾股定理,得

  132-52=144,所以另一条直角边的长为12.

  所以这个直角三角形的面积是×12×5=30(cm2).

  例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点A爬到

  顶点B,则它走过的最短路程为()

  A.B.C.3aD.分析:本题显然与例2属同种类型,思路相同.但正方体的

  各棱长相等,因此只有一种展开图.

  解:将正方体侧面展开

  八年级数学《勾股定理》教案 3

  重点、难点分析

  本节内容的重点是勾股定理的逆定理及其应用。它可用边的关系判断一个三角形是否为直角三角形。为判断三角形的形状提供了一个有力的依据。

  本节内容的难点是勾股定理的逆定理的应用。在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方。

  教法建议:

  本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法。通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题。在课堂教学中营造轻松、活泼的课堂气氛。通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的。具体说明如下:

  (1)让学生主动提出问题

  利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。所有这些都由学生自己完成,估计学生不会感到困难。这样设计主要是培养学生善于提出问题的`习惯及能力。

  (2)让学生自己解决问题

  判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路。

  (3)通过实际问题的解决,培养学生的数学意识。

  教学目标:

  1、知识目标:

  (1)理解并会证明勾股定理的逆定理;

  (2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

  (3)知道什么叫勾股数,记住一些觉见的勾股数。

  2、能力目标:

  (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

  (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力。

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过知识的纵横迁移感受数学的辩证特征。

  教学重点:

  勾股定理的逆定理及其应用

  教学难点:

  勾股定理的逆定理及其应用

  教学用具:

  直尺,微机

  教学方法:

  以学生为主体的讨论探索法

  教学过程:

  1、新课背景知识复习(投影)

  勾股定理的内容

  文字叙述(投影显示)

  符号表述

  图形(画在黑板上)

  2、逆定理的获得

  (1)让学生用文字语言将上述定理的逆命题表述出来

  (2)学生自己证明

  逆定理:如果三角形的三边长 有下面关系:

  那么这个三角形是直角三角形

  强调说明:

  (1)勾股定理及其逆定理的区别

  勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。

  (2)判定直角三角形的方法:

  ①角为 、

  ②垂直、

  ③勾股定理的逆定理

  2、 定理的应用(投影显示题目上)

  例1 如果一个三角形的三边长分别为

  则这三角形是直角三角形

  例2 如图,已知:CD⊥AB于D,且有

  求证:△ACB为直角三角形。

  以上例题,分别由学生先思考,然后回答。师生共同补充完善。(教师做总结)

  4、课堂小结:

  (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

  (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

  5、布置作业:

  a、书面作业P131#9

  b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

  求证:△DEF是等腰三角形

  八年级数学《勾股定理》教案 4

  课题:

  勾股定理

  课型:

  新授课

  课时安排:

  1课时

  教学目的:

  一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。

  二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。

  教学重点:

  引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题

  教学难点:

  用面积法方法证明勾股定理

  课前准备:

  多媒体ppt,相关图片

  教学过程:

  (一)情境导入

  1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,2002年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。

  2、多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?已知一直角三角形的.两边,如何求第三边?学习了今天的这节课后,同学们就会有办法解决了。

  (二)学习新课问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。

  (三)巩固练习1、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?2、解决课程开始时提出的情境问题。

  (四)小结

  1、背景知识介绍①《周髀算径》中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律;②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是他的独创。

  2、通过这节课的学习,你会写方程了吗?你有什么收获和体会?

  (五)作业练习18.1中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。

  八年级数学《勾股定理》教案 5

  一、教学目标

  (一)教学知识点

  1.掌握勾股定理,了解利用拼图验证勾股定理的方法.

  2.运用勾股解决一些实际问题.

  (二)能力训练要求

  1.学会用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力.

  2.在拼图过程中,鼓励学生大胆联想,培养学生数形结合的意识.

  (三)情感与价值观要求

  利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献.借助对学生进行爱国主义教育.并在拼图的过程中获得学习数学的快乐,提高学习数学的兴趣.

  二.教学重、难点

  重点:勾股定理的证明及其应用.

  难点:勾股定理的证明.

  三.教学方法

  教师引导和学生自主探索相结合的方法.

  在用拼图的方法验证勾股定理的过程中.教师要引导学生善于联想,将形的问题与数的问题联系起来,让学生自主探索,大胆地联系前面知识,推导出勾股定理,并自己尝试用勾股定理解决实际问题.

  四.教具准备

  1.每个学生准备一张硬纸板;

  2.投影片三张:

  第一张:问题串(记作1.1.2 A);

  第二张:议一议(记作1.1.2 B);

  第三张:例题(记作1.1.2 C).

  五.教学过程

  Ⅰ.创设问题情景,引入新课

  [师]我们曾学习过整式的.运算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的内容.谁还能记得当时这两个公式是如何推出的?

  [生]利用多项式乘以多项式的法则从公式的左边就可以推出右边.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的.

  [生]还可以用拼图的方法来推出.例如:(a+b)2=a2+2ab+b2.我们可以用一个边长为a的正方形,一个边长为b的正方形,两个长和宽分别为a和b的长方形可拼成如下图所示的边长为(a+b)的正方形,那么这个大的正方形的面积可以表示为(a+b)2;又可以表示为a2+2ab+b2.所以(a+b)2=a2+2ab+b2.

  八年级数学《勾股定理》教案 6

  一、教学目标

  通过对几种常见的勾股定理验证方法,进行分析和欣赏。理解数

  学知识之间的内在联系,体会数形结合的思想方法,进一步感悟勾股定理的文化价值。

  通过拼图活动,尝试验证勾股定理,培养学生的动手实践和创新能力。

  (3)让学生经历自主探究、合作交流、观察比较、计算推理、动手操作等过程,获得一些研究问题的方法,取得成功和克服困难的经验,培养学生良好的思维品质,增进他们数学学习的信心。

  二、教学的重、难点

  重点:探索和验证勾股定理的过程

  难点:

  (1)“数形结合”思想方法的理解和应用

  通过拼图,探求验证勾股定理的新方法

  三、学情分析

  八年级的学生已具备一定的生活经验,对新事物容易产生兴趣,动手实践能力也比较强,在班级上已初步形成合作交流,勇于探索与实践的良好班风,估计本节课的学习中学生能够在教师的引导和点拨下自主探索归纳勾股定理。

  四、教学程序分析

  (一)导入新课

  介绍勾股世界

  两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。

  (二)讲解新课

  1、探索活动一:

  观察下图,并回答问题:

  (1)观察图1

  正方形A中含有

  个小方格,即A的面积是

  个单位面积;

  正方形B中含有

  个小方格,即B的面积是

  个单位面积;

  正方形C中含有

  个小方格,即C的面积是

  个单位面积。

  (2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流。

  (3)请将上述结果填入下表,你能发现正方形A,B,C,的面积关系吗?

  A的面积

  (单位面积)

  B的面积

  (单位面积)

  C的面积

  (单位面积)

  图1

  9

  9

  18

  图2

  4

  4

  8

  2、探索活动二:

  (1)观察图3,图4

  并填写下表:

  A的面积

  (单位面积)

  B的面积

  (单位面积)

  C的面积

  (单位面积)

  图3

  16

  9

  25

  图4

  4

  9

  13

  你是怎样得到上面结果的?与同伴交流。

  (2)三个正方形A,B,C的面积之间的关系?

  3、议一议(合作交流,验证发现)

  (1)你能发现直角三角形三边长度之间存在什么关系吗?

  勾股定理:如果直角三角形两直角边分别为a、b,斜边为c

  ,那么a2+b2=c2。

  即直角三角形两直角边的平方和等于斜边的'平方。

  (2)我们怎么证明这个定理呢?

  教师指导第一种证明方法,学生合作探究第二种证明方法。

  可得:

  想一想:大正方形的面积该怎样表示?

  想一想:这四个直角三角形还能怎样拼?

  可得:

  4、例题分析

  如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?

  解:∵,

  ∴在中,

  ,根据勾股定理,

  ∴电线杆折断之前的高度=BC+AB=5米+13米=18米

  (三)课堂小结

  勾股定理从边的角度刻画了直角三角形的又一个特征.人类对勾股定理的研究已有近3000年的历史,在西方,勾股定理又被称为“毕达哥拉斯定理”、“百牛定理”、“驴桥定理”等等

  (四)布置作业

  收集有关勾股定理的证明方法,下节课展示、交流.

  五、板书设计

  勾股定理的探索与证明

  做一做

  勾股定理

  议一议

  (直角三角形的直角边分别为a、b,斜边为c,则a2+b2=c2)

  六、课后反思

  《新课程标准》指出:“数学教学是数学活动的教学。”数学实验在现阶段的数学教学中还没有普及与推广,实际上,通过学生的合作探究、动手实践、归纳证明等活动,让数学课堂生动起来,也让学生感觉数学是可以动手做实验的,提高了学生学习数学的兴趣与激情。本节课,我充分利用学生动手能力强、表现欲高的特点,在充裕的时间里,放手让学生动手操作,自己归纳与分析。最后得出结论。我认为本节课是成功的,一方面体现了学生的主体地位,另一方面让实验走进了数学课堂,真正体现了实验的巨大作用。

  八年级数学《勾股定理》教案 7

  教学 目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学 重点:

  分式通分的理解和掌握。

  教学 难点:

  分式通分中最简公分母的确定。

  教学 工具:

  投影仪

  教学 方法:

  启发式、讨论式

  教学 过程

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的 通分 .

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做 最简公分母 .

  根据分式通分和最简公分母的定义,将分式xx ,xx,xx 通分:

  最简公分母为:xx ,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为xx。通分如下:

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的'思路过程。

  例1 通分:

  (1)xx,xx,xx ;

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy 2

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

  解:∵最简公分母是10a 2 b 2 c 2

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:

  (1)取各分母系数的最小公倍数;

  (2)凡出现的字母为底的幂的因式都要取;

  (3)相同字母的幂的因式取指数最大的。

  取这些因式的积就是最简公分母。

  八年级数学《勾股定理》教案 8

  教学目标

  知识与技能:

  了解勾股定理的一些证明方法,会简单应用勾股定理解决问题

  过程与方法:

  在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

  情感态度价值观:

  通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

  教学过程

  1、创设情境

  问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的`图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?

  师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

  设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

  2、探究勾股定理

  观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界

  问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?

  师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论

  追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?

  师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

  设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论

  问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

  师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

  八年级数学《勾股定理》教案 9

  一、学生知识状况分析

  本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。

  二、教学任务分析

  本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。具体内容是运用勾股定理及其逆定理解决简单的实际问题。当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。

  三、本节课的教学目标是:

  1.通过观察图形,探索图形间的关系,发展学生的空间观念.

  2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

  3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.

  利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.

  四、教法学法

  1.教学方法

  引导—探究—归纳

  本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:

  (1)从创设问题情景入手,通过知识再现,孕育教学过程;

  (2)从学生活动出发,顺势教学过程;

  (3)利用探索研究手段,通过思维深入,领悟教学过程.

  2.课前准备

  教具:教材、电脑、多媒体课件.

  学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具.

  五、教学过程分析

  本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业.

  1.3勾股定理的应用:课后练习

  一、问题引入:

  1、勾股定理:直角三角形两直角边的________等于________。如果用a,b和c表示直角三角形的两直角边和斜边,那么________。

  2、勾股定理逆定理:如果三角形三边长a,b,c满足________,那么这个三角形是直角三角形

  1.3勾股定理的`应用:同步检测

  1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )

  A.0.7米B.0.8米C.0.9米D.1.0米

  2.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个( )

  A.锐角弯B.钝角弯C.直角弯D.不能确定

  3.如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )

  A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15

  4.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组.

  A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4

  八年级数学《勾股定理》教案 10

  教学目标

  1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。

  2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。

  3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。

  教学重点

  了解勾股定理的由来,并能用它来解决一些简单的问题。

  教学难点

  勾股定理的探究以及推导过程。

  教学过程

  一、创设问题情景、导入新课

  首先出示:投影1(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

  出示课件观察后回答:

  1、观察图1—2,正方形A中有_______个小方格,即A的面积为______个单位。

  正方形B中有_______个小方格,即B的面积为______个单位。

  正方形C中有_______个小方格,即C的面积为______个单位。

  2、你是怎样得出上面的结果的?

  3、在学生交流回答的基础上教师进一步设问:图1—2中,A,B,C面积之间有什么关系?学生交流后得到结论:A+B=C。

  二、层层深入、探究新知

  1、做一做

  出示投影3(书中P3图1—3)

  提问:(1)图1—3中,A,B,C之间有什么关系?(2)从图1—2,1—3中你发现什么?

  学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。

  2、议一议

  图1—2、1—3中,你能用三角形的边长表示正方形的面积吗?

  (1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

  (2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?

  3、想一想

  我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的.是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?

  三、巩固练习。

  1、在图1—1的问题中,折断之前旗杆有多高?

  2、错例辨析:△ABC的两边为3和4,求第三边

  解:由于三角形的两边为3、4

  所以它的第三边的c应满足

  =25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并未交待C是斜边。

  综上所述这个题目条件不足,第三边无法求得

  四、课堂小结

  鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。

  五、布置作业

【八年级数学《勾股定理》教案】上海花千坊相关的文章:

八年级数学勾股定理教案02-22

八年级数学上勾股定理复习教案10-06

八年级数学勾股定理教案7篇02-22

八年级数学勾股定理教案(7篇)02-22

勾股定理的逆定理数学教案02-10

数学教案-勾股定理的逆定理09-29

初中数学《勾股定理的逆定理》教案11-05

八年级数学下勾股定理的证明(二)教案12-16

初中数学《勾股定理应用》优秀教案09-03