上海花千坊

二次根式的除法

时间:2023-04-28 22:50:06 数学试题 我要投稿
  • 相关推荐

二次根式的除法

二次根式的除法1

二次根式的除法(下载: )

二次根式的除法2

  这节课因为有了前面学习的基础,所以学生学习起来并不难,本节课的重点是二次根式的乘除法法则,难点是灵活运用法则进行计算和化简。

  开始可以从二次根式的性质引入,将二次根式的性质反过来就是二次根式的乘除法法则: ,利用这个法则,可以进行二次根式的乘法和除法运算。

  本节课中的易错点是运算的最后结果不是最简结果,因为学生只顾着运用法则进行计算了,忽略了二次根式的化简,举例说明: ,这个运算过程只是运用了法则,但没有进行化简,应该是 。

  本节课中的难点是对于分母中含有根号的式子不会化简,这应该牵涉到分母有理化,分母有理化这个概念本章课本中没有提及,但是课后练习和习题中也有涉及,如何处理呢?举例说明:

  随堂练习中一个题目 对于这个题目,很多学生表示都不知道从何下手,只有一些程度好的学生有自己的看法,我让学生进行了讲解: ,学生能将分母中不含有根号,想到用 来代替,然后再利用法则进行解答,真是聪明。学生的这种做法,我给予了充分的肯定,并表扬了这位同学。并且我也用分母有理化的思想进行了另一种方法的讲解,因为后面我想补一节分母有理化,所以在这里只是展示了一下过程, 这样同样能达到化简的目的,然后让学生对比了一下刚才那位同学的做法,没有展开讲。

  剩下的时间我主要针对法则让学生进行了练习,做正确的小组加分,不正确的进行点评,到下课时,学生基本掌握了二次根式的乘除法的计算。

  学生比较容易理解这两个法则,下面可以学习例2,主要是让学生通过看课本来理解法则的应用,在学生理解例题的基础上,让学生思考还有没有其他方法来解决这些题目,以此来增加学生解题的思路与方法。在这里可以拿出1-2个题目来示范。

  如 ,可以有两种解法:

  法一: 这一种也是课本上的`方法,是直接利用了二次根式的乘法法则。

  法二: 这是利用了二次根式的性质。

  通过这个题目的讲解,可让学生灵活掌握二次根式的计算方法。

  再一个就是二次根式的乘除法混合运算,课本上有一个例子, ,通过这个例子引出一个公式: ,算是对法则的一个延伸。学生通过这个公式,也可以进行一些二次根式的运算。

  《二次根式的乘除法》教学反思的全部内容由数学网收集整理,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,如对提供的教材内容有兴趣,欢迎继续关注。

二次根式的除法3

  这是八年级第十六章第三节,学生是在已掌握最简二次根式、合并同类二次根式以及二次根式的加减法的基础上进一步学习二次根式的乘除法,同时为以后学习二次根式的混合运算作铺垫.首先,情景引入:通过将大正方形中已知两小正方形的面积,求剩下的长方形面积的问题引入二次根式的乘法及乘法法则;其次,通过例题1利用总结出二次根式的乘除法则进行计算同时注意结果要化简;再次,利用乘除法关系引入二次根式的除法法则并用之计算;最后,通过二次根式的乘除法来解决实际问题.

  总而言之:在二次根式的乘除法运算法则的学习和应用的过程中,渗透分析、概括、类比等数学思想方法,提高学生的思维品质和学习兴趣.

  此节教学过程中要注意:在学生学习过程中对二次根式的乘除法法则理解上问题不大,但常常忘记运算结果需要化简,此外被开方数是多项式的乘除法运算上容易出错.象练习册第3题的(3)小题尽管课堂上练过一题,但还是有人错.

  20xx年初的一天,吴亚萍教授来学校指导,学校要求我准备一节新基础的.研讨课。于是,我按我的理解与想法上了一堂形似的新基础教学研讨课,凭我的功底,课当然获得了同事的好评,但吴教授的当头一棒让我震惊了。吴教授对“学生讨论”的讲述,评点让我感觉到耳目一新。是的,教学这么多年,让学生讨论、活动却没有认真思考过它的价值。总是认为讨论是一个教学的环节,也是研讨课的需要,却不知道还有“假讨论”、“白讨论”一说。更不要说什么叫开放,如何开放,开放到什么程度的问题。那一天我被吴教授的评课折服了。课后,我再次回忆反思这堂课的问题,我深深感觉到差距。我再一次仔细阅读了叶澜教授和吴亚萍教授的相关著作。才真正体会到新基础教育的理念要求是相当高的。可以说是理想化的教育状态。至今,我都不敢说我领悟了新基础教育。我只是明白了新基础教育对教师提出了更高的要求,不仅要求教师有扎实的功底,还要求教师对整个初中教学的内容要理解,甚至小学、高中的教学内容也要了解,这样才可以为学生建立网状的知识结构。更要求教师有灵活的应变能力,以灵活处理教学过程中出现的不可预测的资源。对备课也提出了更高的要求,不仅要备书本知识,更要备学生,对不同的班级,不同的学生都提出不同的要求。要预测不同学生可能出现的不同的问题。此时,我感觉自己是多么的贫乏。俗话说,知耻而后勇,我要努力去改变。

二次根式的除法4

  初次进行“信息技术与课程整合”课程的实验,首先感到的一个字就是“累”。也许是缺乏经验的原因。尽管课前进行充分的准备,可是在实施的过程中,大概是传统的单一型课程印记太深刻的缘故吧,总是担心学生对知识点的掌握会产生问题!有意思的是一开始学生面对课堂上大量的可自由支配的时间也感到不会用。部分小组的学生缺乏动手探索的精神,总在观察其他小组的进展,或是期待教师的提示。寄希望于有了现成的样板后再进行模仿。使我犹感“二期课改”的必要性,绝不能再以“一言堂”、“启发和灌输”为教学模式了。

  其次,变课堂上一对多的教学结构为学生之间链式学习结构,更能促进学生之间的合作与交流,使他们成为学习的主人。特别是其中一组同学,起初都不敢上机操作,你推我让。在指导老师的.帮助下,互相确定的了自己的优势与劣势,进行了分工。有的负责搜索、有的负责整理、有的做笔记等等。在一段时间以后这个小组也能够独立的完成课题学习的任务。我想在合作学习的过程中,每个人都能认真倾听他人的意见和见解,也是一种人际交往能力的提高。

  在寻求学习资源的过程中,学生们在互相指点和帮助下,巩固了计算机操作,并能100%应用搜索引擎进行查找,在交流心得体会的过程中,进一步学习别人的点滴经验,逐步提高信息技术的素养。

  时间的紧迫仍旧是整合课程中的一个矛盾,由于小组内同学的信息技术水准参差不齐,如果仅有一两个同学进行操作,虽然表面上也实现了小组的要求,可是又把学生之间的差距暴露了出来。因此只能够人人进行尝试,互相帮助,共同完成目标。当然由于事先已经考虑到这一问题,因此部分教学内容可以留待下节课的解决。尽量保证学生独立探究的时间,又要保证一定学习效率,这对教师的组织教学提出了很高的要求。

  总之,作为一名教师,我感受到学生学习方式和习惯的小小变化,更感到自己在实验课题方面研究上属于较浅层次。自己也要多学习相关科研文章,设计好下一堂系列课。

二次根式的除法5

  说实话很不愿代表数学组出这节公开课,出课的课题是展示与评价的有效性,一是因为初三的时间紧张平时学生展示的练习不够,更重要的是我不足以代表数学组的教学水平。由于种种原因,还是出了这节公开课。下面我从以下几个方面进行反思:

  学案设计:原先设想在初三结束前完成二次根式一章,由于历史生物的结业考试,二次根式的加减实在是讲不完,只好把乘除讲完。时间赶到二次根式除法,于是,在学案的设计上,从处理方式与环节上,都与二次根式乘法相类似,但是比乘法所涉及的数学思想、数学思维力度更高,首先学习过程中用到类比的思想,与乘法类比,提高了学生的接受度,思维更加的顺畅,在本节中最简二次根式的概念的两个条件分别分散到乘法和除法两节中,最后想概括出这一概念,还是因为课堂效率不高没有能够概括出。其次,分母有理化教材虽然删掉,但是用所学过的知识,学生经过思考,头脑有些灵活性的话,是可以自己想出办法解决的,尤其是对于分母是整个根号的这种情况,因此在本节课的最后加上了把3中分母的根号化掉,事实上在用公式计算时,由于没有领着学生对公式进行再认识,学生先用乘法化简,出现了类似的结果,学生经过自己动脑思考会想出不同的办法解决这个问题的。

  展示的范围与效果:全员展示,基本性的题目,公式的运用,主要是5、6号同学,虽然他们都各自出现不同的问题,但是通过展示能够正确的利用公式,有的六号非常顺利的解决问题,有的出现了问题,但能够说出自己的根据,有的根本不会,通过展示指导能够得到提高,5号同学展示的难度相对提高,由于学习能力较6号强,都顺利的完成任务,并总结出方法,对于难度较大的题目,找出不同解决方法进行展示,让学生从不同的角度进行问题的解决,数学思想方法的展示,主要的是学习比较灵活的学生,他们能够根据自己对知识理解想出不同的方法,并根据自己在解决问题中的关键点或难点及时的.提问或提示,基本上每个小组的1号同学都得到展示,在展示的过程中对于其他同学是一个学习提高的过程,全班展示率达到50%,在展示的过程中提高了学习的效率和积极性。

  数学知识是系统的,练习的,新旧知识之间是相互联系的,对于这节课,如果能够在有5分钟,及时的对知识体系概念进行总结可能会更好一些,最简二次根式的两个条件都已经在做题的过程中体现出来,但概念没有进行总结。这是这节课的一个不足。其次本节课的评价不够具体,有效。

二次根式的除法6

  1.最简二次根式的判断;

  2 。体验到分母有理化最简方法是先局部化简;

  对于第一个目标期望学生能自行归纳出来最简二次根式一般形式就最好,对于第二个目标让学生自行体验到先化简再分母有理化的方法是最简方法.

  今天上午结束这节课后,颇有感触.同学们讨论问题提的时候自始至终非常专注,而且很高效,有三个几乎从来不举手回答问题的同学能大胆走上讲台给大家讲解二次根式一道除法题的三种解法,他们的登台引起全班同学的欢呼.这是组员们的'努力所带来的结果.对于这节课有以下几点值得思考:

  问题的设置:

  这节课为了让同学掌握二次根式的定义,我直接抛出“什么是二次根式”。

  这个问题让同学们去讨论,但后来效果并没有达到我想象的高度.其实后来想想这个问题的设置不能过于直接,应当列举诸多二次根式,让同学们判断哪些是二次根式,并讨论其理由,这样引导学生从感性过渡到理性.从而顺利掌握这个概念的本质.所以问题的设置不能死板,教条,要多样化,其目的是让学生能高效的掌握知识本身.

  帕尔默在《教学勇气》一书中把教师比喻为牧羊犬,教师的在课堂教学中的作用仅仅是做好外围工作,随时注意那些可能游离于课堂之外的同学,让其能进入状态之中,正如,羊到草地上直接和草接触,老师要让学生直接接触知识本身,不需要经过老师这个中间环节.但我对于这个问题有一个新的想法,那就是羊该在哪块草地吃草是需要预先精心考虑的!所以问题的设置很关键,要让羊能吃到最好的草,让每只羊能吃到最容易消化的草,这很重要.老师在设置问题时,要仔细研究,既要让学生能自主解决问题,但又要能比较好的解决问题.这还是需要遵循传统

  教学的规律:

  1.循序渐进: 这节课原本很希望学生能在一节课内就体会到先局部化简后在进行分母有理化的方法计算起来比较简洁.但这节课并没有实现这个目的,而且没有想到学生竟然给出多种方法.我想这一节课是否,对于第二个教学目标只能是一个循序渐进的过程,应当把这个问题延伸到下一节课,可以在下一节课中把学生的课后作业的解法对比,让学生去体会哪种方法更好,更简洁.不要急于在这一节课中去解决,这一节课只要能用自己的方法解决就行.

  2. 作业的处理:以前处理作业中总是对于做错的题目给一个红叉,并每一份作业评分.从现在开始,作业不再给红叉,用横线标注代替红叉,也不给评分.让孩子们关注的永远是知识本身,对于作业始终强调的是诚实的独立作业,认真的纠错这两点.

二次根式的除法7

  【教学目标】

  1.运用法则

  进行二次根式的乘除运算;

  2.会用公式

  化简二次根式。

  【教学重点】

  运用

  进行化简或计算

  【教学难点】

  经历二次根式的乘除法则的'探究过程

  【教学过程】

  一、情境创设:

  1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?

  2.计算:

  二、探索活动:

  1.学生计算;

  2.观察上式及其运算结果,看看其中有什么规律?

  3.概括:

  得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

  将上面的公式逆向运用可得:

  积的算术平方根,等于积中各因式的算术平方根的积。

  三、例题讲解:

  1.计算:

  2.化简:

  小结:如何化简二次根式?

  1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

  2.P62结果中,被开方数应不含能开得尽方的因数或因式。

  四、课堂练习:

  (一).P62 练习1、2

  其中2中(5)

  注意:

  不是积的形式,要因数分解为36×16=242.

  (二).P67 3 计算 (2)(4)

  补充练习:

  1.(x>0,y>0)

  2.拓展与提高:

  化简:1).(a>0,b>0)

  2).(y

  2.若,求m的取值范围。

  ☆3.已知:,求的值。

  五、本课小结与作业:

  小结:二次根式的乘法法则

  作业:

  1).课课练P9-10

  2).补充习题

二次根式的除法8

  1.乘法规定:(a≥0,b≥0)

  二次根式相乘,把被开方数相乘,根指数不变。

  推广:

  (1)(a≥0,b≥0,c≥0)

  (2)(b≥0,d≥0)

  2.乘法逆用:(a≥0,b≥0)

  积的算术平方根等于积中各因式的'算术平方根的积。

  注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;

  3.除法规定:(a≥0,b>0)

  二次根式相处,把被开方数相除,根指数不变。

  推广:,其中a≥0,b>0,。

  方法归纳:两个二次根式相除,可采用根号前的系数与系数对应相除,根号内的被开方数与被开方数对应相除,再把除得得结果相乘。

  4.除法逆用:(a≥0,b>0)

  商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

二次根式的除法9

  教学建议

  知识结构:

  重点难点分析:

  是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简。商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握。

  教学难点是与商的算术平方根的关系及应用。与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号。由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式。

  教法建议:

  1。 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质。教师在此过程当中给与适当的指导,提出问题让学生有一定的探索方向。

  2。 本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论法则,并运用这一法则进行简单的运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化。这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开。

  3。 引导学生思考“想一想”中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程当中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的'思维。

  教学设计示例

  一、教学目标

  1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

  2.会进行简单的运算;

  3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

  4。 培养学生利用公式进行化简与计算的能力;

  5。 通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

  6。 通过分母有理化的教学,渗透数学的简洁性。

  二、教学重点和难点

  1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的运算,还要使学生掌握采用分母有理化的方法进行.

  2.难点:与商的算术平方根的关系及应用.

  三、教学方法

  从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

  内容可引导学生自学,进行总结对比.

  四、教学手段

  利用投影仪.

  五、教学过程

  (一) 引入新课

  学生回忆及得算数平方根和性质: (a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)

  学生观察下面的例子,并计算:

  由学生总结上面两个式的关系得:

  类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

  (二)新课

  商的算术平方根.

  一般地,有 (a≥0,b>0)

  商的算术平方根等于被除式的算术平方根除以除式的算术平方根.

  让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.

  引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.

  例1 化简:

  (1) ; (2) ; (3) ;

  解∶(1)

  (2)

  (3)

  说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数。

  例2 化简:

  (1) ; (2) ;

  解:(1)

  (2)

  让学生观察例题中分母的特点,然后提出, 的问题怎样解决?

  再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况, 的问题,我们将在今后的学习中解决。

  学生讨论本节课所学内容,并进行小结.

  (三)小结

  1.商的算术平方根的性质.(注意公式成立的条件)

  2.会利用商的算术平方根的性质进行简单的二次根式的化简.

  (四)练习

  1.化简:

  (1) ; (2) ; (3) 。

  2.化简:

  (1) ; (2) ; (3)

  六、作业

  教材P.183习题11.3;A组1.

  七、板书设计

【二次根式的除法】上海花千坊相关的文章:

二次根式教案02-15

二次根式教学反思04-07

二次根式的加减(2)05-01

化简二次根式教学反思04-27

二次根式的化简教学反思04-27

二次根式的运算教学反思10-23

二次根式教案15篇02-27

数学二次根式教案02-15

《化简二次根式》教学反思04-27

关注二次根式新题型04-29