上海花千坊

高二物理教案

时间:2022-11-07 17:53:36 物理教案 我要投稿

高二物理教案15篇

  作为一名老师,常常需要准备教案,教案是教材及大纲与课堂教学的纽带和桥梁。我们该怎么去写教案呢?下面是小编收集整理的高二物理教案,希望能够帮助到大家。

高二物理教案15篇

高二物理教案1

  教学目标

  (一)知识目标

  1、知道电流的产生原因和条件.

  2、理解电流的概念和定义式,并能进行有关的计算

  3、理解电阻的定义式,掌握并能熟练地用来解决有关的电路问题.知道导体的伏安特性.

  (二)能力目标

  1、通过电流与水流的类比,培养学生知识自我更新的能力.

  2、掌握科学研究中的常用方法——控制变量方法,培养学生依据实验,分析、归纳物理规律的能力.

  (三)情感目标

  通过电流产生的历史材料的介绍,使学生了解知识规律的形成要经过漫长曲折的过程,培养他们学习上持之以恒的思想品质.

  教学建议

  1、关于电流的知识,与初中比较有所充实和提高:

  从场的观点说明电流形成的条件,即导体两端与电源两极接通时,导体中有了电场,导体中的自由电荷在电场力的作用下,发生定向移动而形成电流.

  知道正电荷在电场力作用下从电势高处向电势低处运动,所以电流的'方向是从电势高的一端流向电势低的一端,即在电源外部的电路中,电流的方向是从电源的正极流向负极.

  2、处理实验数据时可以让学生分析变量,通过计算法和图象法来出来处理数据,加强学生对图象的认识,进一步学会如何运用图象来解题.有条件的学校可以采用“分组实验—数据分析—得出结论”的思路以加强感性认识,有利于对本节重点——的理解

  3、的讲法与初中不同,是用比值定义电阻的,这种讲法更科学,适合高中学生的特点.电阻的定义式变形后有些学生会产生歧义,认为电阻是由电压和电流决定的,要注意引导解释.

  4、要求学生知道公式,从而知道电流的大小是由什么微观量决定的.在本节的“思考与讨论”中,希望学生能够按照其中的设问自己推导出公式,以加深对电流的理解.如果学生自己推导有困难,希望教师加以引导.

  5、对于导体的伏安特性是本节的难点,应该结合数学知识进行,并尽可能的多举实例以加强对知识的深化.

高二物理教案2

  ⑴课题:高二物理:第一章静电场

  ⑵授课教师:黎亭

  ⑶课时:2小时

  ⑷学生现状分析:现物理水平为60分左右,属于中下水平。补课安排:复习讲解高二知识,抓基础知识为切入点,后继强化。

  (5)教学内容

  高二物理上册第一章第一节与第二节

  第一节电荷及其守恒定律

  本节从物质微观结构的角度认识物体带电的本质,使物体带电的方法。给学生渗透看问题要透过现象看本质的思想。摩擦起电、两种电荷的相互作用、电荷量的概念初中已接触,电荷守恒定律对学生而言不难接受,在此从原子结构的基础上做本质上分析,使学生体会对物理螺旋式学习的过程。本节关键是做好实验,从微观分析产生这种现象的原因。有了使物体带电的理解,电荷守恒定律便水到渠成,进一步巩固高中的守恒思想。培养学生透过现象看本质的科学习惯。通过阅读材料,展示物理学发展中充满睿智和灵气的科学思维,弘扬前辈物理学家探寻真理的坚强意志和科学精神。

  【教学预设】

  使用幻灯片时充分利用它的高效同时,尽量保留黑板的功能始终展示本节课的知识框架。

  在条件允许的情况下努力使实验简化,给学生传递这样一个信息──善于从简单中捕捉精彩瞬间,从日常生活中发现和体验科学(阅读材料)。

  练习题设计力求有针对性、导向性、层次性。

  【教学目标】

  (一)知识与技能

  知道两种电荷及其相互作用。

  知道三种使物体带电的方法及带电本质。

  知道电荷守恒定律。

  知道什么是元电荷、比荷、电荷量、静电感应的概念。

  (二)过程与方法

  物理学螺旋式递进的学习方法。

  由现象到本质分析问题的方法。

  (三)情感态度与价值观

  通过对本节的学习培养学生从微观的角度认识物体带电的本质—透过现象看本质。

  科学家科学思维和科学精神的渗透─—课后阅读材料。

  【教学重、难点】

  重点:电荷守恒定律

  难点:利用电荷守恒定律分析解决相关问题摩擦起电和感应起电的相关问题。

  【教学过程】

  引入新课:今天开始我们进入物理学另一个丰富多彩,更有趣的殿堂,电和磁的世界。高中的电学知识大致可分为电场的`电路,本章将学习静电学,将从物质的微观的角度认识物体带电的本质,电荷相互作用的基本规律,以及与静止电荷相联系的静电场的基本性质。

  【板书】第一章静电场

  【板书】一、电荷(复习初中知识)

  1.两种电荷:正电荷和负电荷:把用丝绸摩擦过的玻璃棒所带的电荷称为正电荷,用正数表示。把用毛皮摩擦过的硬橡胶棒所带的电荷称为负电荷,用负数表示。

  2.电荷及其相互作用:同种电荷相互排斥,异种电荷相互吸引。

  3.使物体带电的方法:

  摩擦起电──学生自学P2后解释摩擦起电的原因,培养学生理解能力和语言表达能力。为电荷守恒定律做铺垫。

  演示摩擦起电,用验电器检验是否带电,让学生分析使金属箔片张开的原因过渡到接触起电。

  接触起电──电荷从一个物体转移到另一个物体上仔细观察从靠近到接触过程中还有哪些现象?──靠近未接触时箔片张开张开意味着箔片带电?看来还有其他方式使物体带电?其带电本质是什么?──设置悬念。

  自学P3第二段后,回答自由电子和离子的概念及各自的运动特点。解释观察到的现象。

  再演示,靠近(不接触)后再远离,箔片又闭合,即不带电,有没有办法远离后箔片仍带电?

  提供器材,鼓励学生到时讲台演示。得出静电感应和感应起电。

  静电感应和感应起电──电荷从物体的一部分转移到另一部分。

  通过对三种起电方式本质的分析,让学生思考满足共同的规律是什么?得出电荷守恒定律。

  学生自学教材,掌握电荷守恒定律的内容,电荷量、元电荷、比荷的概念。

  【板书】

  二、电荷守恒定律:

  电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。

  一个与外界没有电荷交换的系统,电荷的代数和总是保持不变。

  【板书】

  三、几个基本概念

  电荷量──电荷的多少叫做电荷量。符号:Q或q单位:库仑符号:C。

  元电荷──电子所带的电荷量,用e表示,e=1.60×10C。

  注意:所有带电体的电荷量或者等于e,或者等于e的整数倍。电荷量是不能连续变化的物理量。最早由美国物理学家密立根测得

  比荷──电荷的电荷量q与其质量m的比值q/m,符号:C/㎏。

  静电感应和感应起电──当一个带电体靠近导体时,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离一端带同号电荷。这种现象叫做静电感应。利用静电感应使金属导体带电的过程叫做感应起电。

  课堂训练:见附件

高二物理教案3

  本节教材分析:

  波的干涉是波的一种特殊的叠加现象,所以对波的叠加现象的理解是认识波的干涉现象的基础。教材首先讲了波的叠加现象,即两列波相遇而发生叠加时,对某一质点而言,它每一时刻振动的总位移,都等于该时刻两列波在该质点引起的位移的矢量和。

  在学生理解波的叠加的基础上,再进一步说明在特殊情况下,即当两列波的频率相同时,叠加的结果就会出现稳定的特殊图样,即某些点两列波引起的振动始终加强,某些点两列波引起的振动始终减弱,并且加强点与减弱点相互间隔,这就是干涉现象。

  由于对干涉现象的理解,需要一定的空间想象力图,可借助图片、计算机模拟,尽可能使学生形象、直观地理解干涉现象。

  教学目标:

  1。知道波的叠加原理。

  2。知道什么是波的干涉现象和干涉图样。

  3。知道干涉现象也是波特有的现象。

  教学重点:波的叠加原理和波的干涉现象。

  教学难点:波的干涉中加强点和减弱点的位移和振幅的区别。

  教学方法:实验法、电教法、训练法。

  教学用具:实物投影仪、CAI课件、波的干涉实验仪。

  教学过程

  一、引入

  1。什么叫波的衍射?

  2。产生明显的衍射的条件是什么?

  学生答:波可以绕过障碍物继续传播,这种现象叫做波的衍射。

  只有缝、孔的宽度和障碍物的尺寸跟波长相差不多,或者比波长更小时,才能产生明显的衍射现象。

  教师:波的衍射研究的是一个波源发出波的情况,那么两列或两列以上的波在同一介质中传播,又会发生什么情况呢?

  二、新课教学

  (一)波的叠加原理

  [设问]把两块石子在不同的地方投入池塘的水中,就有两列波在水面上传播,两列波相遇时,会不会像两个小球相碰时那样,都改变原来的运动状态呢?

  [演示]取一根长绳,两位同学在这根水平长绳的两端分别向上抖动一下,学生观察现象。

  [学生叙述现象]

  现象一:抖动一下后,看到有两个凸起状态在绳上相向传播。

  现象二:两列波相遇后,彼此穿过,继续传播,波的形状和传播的情形跟相遇前一样。

  [教师总结]两列波相遇后,每列波都像相遇前一样,保持各自原来的波形,继续向前传播,这是波的独立传播特性。

  [多媒体模拟绳波相遇前和相遇后的波形]

  [教师]刚才,通过实验,我们知道了两列波在相遇前后,它们都保持各自的运动状态,彼此都没有受到影响,那么在两列波相遇的区域里情况又如何呢?

  [多媒体模拟绳波相遇区的情况]

  [教师总结]在两列波重叠的区域里,任何一个质点同时参与两个振动,其振动位移等于这两列波分别引起的位移的矢量和。当两列波在同一直线上振动时,这两种位移的矢量和简化为代数和,这叫做波的叠加原理。

  [强化训练]两列振动方向相同和振动方向相反的波叠加,振幅如何变化?振动加强还是减弱?

  学生讨论后得到:两列振动方向相同的波叠加,振动加强,振幅增大;两列振动方向相反的波叠加,振动减弱,振幅减小。

  (二)波的干涉

  [实物投影演示]把两根金属丝固定在同一个振动片上,当振动片振动时,两根金属丝周期性地触动水面,形成两个波源,观察在两列波相遇重叠的区域里出现的现象。

  [教师说明]由于这两列波是由同一个振动片引起的,所以这两个波源的振动频率和振动步调相同。

  [学生叙述现象]在振动的水面上,出现了一条条从两个波源中间伸展出来的相对平静的区域和激烈振动的区域,这两种区域在水面上的位置是固定的,而且相互隔开。

  两列频率相同的水波相遇,会出现振动加强和振动减弱相互间隔的现象,形成稳定的干涉图样。

  干涉;频率相同的两列波叠加,使某些区域的振动加强、某些区域的振动减弱,并且振动加强和振动减弱的区域互相间隔,这种现象叫波的干涉。

  在干涉现象中形成的图样叫干涉图样。由于两列波的频率相同,振动加强处总是加强,振动减弱处总是减弱,所以出现了稳定的干涉图样。

  [用多媒体展示课本水波的干涉图样及波的干涉的示意图]

  [教师]为什么会出现这种现象呢?

  结合课本图10—30进行分析:?

  对于图中的a点:?

  设波源S1、S2在质点a引起的振幅分别为A1和A2,以图中a点波峰与波峰相遇时刻计时,波源S1、S2分别引起a质点的振动图象如图甲、乙所示,当两列波重叠后,质点a同时参与两个振动,合振动图象如图丙所示:

  从图中可看出:对于a点,在t=0时是两列波的波峰和波峰相遇,经过半个周期,就变成波谷和波谷相遇,也就是说:在a点,两列波引起的振幅都等于两列波的振幅之和,即a点始终是振动加强点。

  说明的几个问题:

  1。从波源S1、S2发出的两列波传到振动加强的点a振动步调是一致的,引起质点a的振动方向是一致的,振幅为A1+A2。

  2。振动加强的质点a并不是始终处于波峰或波谷,它仍然在平衡位置附近振动,只是振幅最大,等于两列波的振幅之和。

  3。振动加强的条件:波峰与波峰或波谷与波谷相遇点是振动加强点。加强点与两个波源的距离差:△r=r2—r1=k (k=0,1,2,3)

  那么,振动减弱的点又是如何形成的呢?

  以波源S1、S2分别将波峰、波谷传给减弱点b时刻开始计时,波源S1、S2分别引起质点b振动的图象如图甲、乙所示,当两列波重叠后,质点a同时参与两个振动,合振动图象如图丙所示:

  在b点是两列波的波峰和波谷相遇,经过半个周期,就变成波谷和波峰相遇,在这一点两列波引起的合振动始终是减弱的,质点振动的振幅等于两列波的振幅之差。?

  说明的几个问题:?

  1。从波源S1、S2发出的两列波传到b点时引b的振动方向相反,振幅为|A1—A2|。

  2。振动减弱的质点b并不是一定不振动,只是振幅最小,等于两列波的振幅之差。

  3。振动减弱的条件:波峰与波谷相遇点是振动加强点。减弱点与两个波源的距离差:△r=r2—r1=(2k+1)/2 (k=0,1,2,3)

  [强化训练]

  1。从一条弦线的两端,各发生一如图甲所示的横脉冲,它们均沿弦线传播,速度相等,传播方向相反,在它们传播的过程中,可能出现的脉冲波形是图乙中的(ABD)

  2。如上图中s1和s2是两个相干波源,以s1和s2为圆心的两组同心圆弧分别表示在同一时刻两列波的波峰和波谷,实线表示波峰,虚线表示波谷,a、b、c三点中,振动加强的点是 ,振动减弱的点是 ,再过 周期,振动加强的点是 ,振动减弱的点是 。

  (三)产生波的干涉的条件

  [对比投影演示实验]

  实验一:在投影仪上放一个发波水槽,用同一振动片带动两个振针振动,观察产生的现象。

  实验二:在投影仪上放一个发波水槽,用二个振针分别激起两列水波,观察发生的`现象。?

  [学生叙述现象]

  现象一:看到了稳定的干涉图样(实验一)

  现象二:实验二中,得到的干涉图样是不稳定的。

  产生干涉的条件:两列波的频率相同。

  说明:

  1。干涉现象中那些总是振动加强的点或振动减弱的点是建立在两个波源产生的频率相同的前提条件下。

  2。如果两列频率不同的波相叠加,得到的图样是不稳定的;而波的干涉是指波叠加中的一个特例,即产生稳定的叠加图样。

  3。声波的干涉。

  4。一切波都能发生干涉,干涉和衍射是波特有的现象。

  [强化训练]

  关于两列波的稳定干涉现象,下列说法正确的是(BD)

  A。任意两列波都能产生稳定干涉现象

  B。发生稳定干涉现象的两列波,它们的频率一定相同

  C。在振动减弱的区域,各质点都处于波谷

  D。在振动加强的区域,有时质点的位移等于零

  两列波叠加产生稳定干涉现象是有条件的,不是任意两列波都能产生稳定干涉现象的,两列波叠加产生稳定干涉现象的一个必要条件是两列波的频率相同,所以选项A是错误的而选项B是正确的;在振动减弱的区域里,只是两列波引起质点的振动始终是减弱的,质点振动的振幅等于两列波的振幅之差,如果两列波的振幅相同,质点振动的振幅就等于零,也不可能各质点都处于波谷,所以选项C是错误的。在振动加强的区域里,两列波引起质点的振动始终是加强的,质点振动的最激烈,振动的振幅等于两列波的振幅之和,但这些点始终是振动着的,因而有时质点的位移等于零,所以选项D是正确的。所以本题应选B、D。

  强调:不论是振动加强点还是振动减弱点,位移仍随时间做周期性变化。

  三、小结

  1。什么是波的独立性?什么是波的叠加原理?

  2。什么是波的干涉?产生稳定干涉的条件是什么?

  四、板书设计

  五、1。课本P18?第3题?2。课本 P18的做一做:观察声音的干涉现象。?

高二物理教案4

  知识与技能:

  1.理解点电荷的概念。

  2.通过对演示实验的观察和思去向不明,概括出两个点电荷之间的作用规律。掌握库仑定律。

  过程与方法:

  1.观察演示实验,培养学生观察、总结的能力。

  2.通过点电荷模型的建立,了解理想模型方法,把复杂问题简单化的途径,知道从现实生活的情景中如何提取有效信息,达到忽略次要矛盾,抓住主要矛盾,直指问题核心的目标。

  情景引入

  为了测定水分子是极性分子还是非极性分子,可做如下实验:在酸性滴定管中注入适当蒸馏水,打开活塞,让水慢慢如线状流下,把用丝绸摩擦过的玻璃棒接近水流,发现水流向靠近玻璃棒的方向偏转,这证明水分子是极性分子,聪明的同学,根据上述素材,你想知道是如何证明水分子是极性分子吗?

  (同性相斥,异性相吸),带正电的一端远离玻璃棒。而水分子两极的电荷量相等,这就使带正电的玻璃棒对水分子显负电的一端的引力大于对水分子显正电的一端的斥力,因此水分子所受的.合力指向玻璃棒,故水流向靠近玻璃棒方向偏转.

  问题探究

  点电荷

  走进生活

  验电器的上部是球形的金属导体,中央金属箔是指针式的形状,电荷分布与带电体的形状有关,与万有引力相似,带电体间的相互作用力与带电体的形状和大小有关。为了研究的方便,在应用万有引力定律时,我们引入了质点的概念,利用万有引力定律就能求出两质点间的万有引力大小,如果带电体也能等效成电荷全部集中在一个几何点上,研究带电体间的相互作用力也会变得相对简单。回顾学过的质点概念,你能建立起点电荷的概念吗?

  自主探究

  1.点电荷

  (1)点电荷是实际带电体的一种理想化的模型。

  (2)一个带电体能否看作点电荷主要看其形状和大小对所研究的问题影响大不大,如果属于无关或次要因素时,或者说,它本身的大小比起它到其他带电体的距离小得多,即可把带电体看作点电荷。

  (3)对于带电体能否被看作点电荷,一定要具体问题具体分析,即使对同一带电体,在有些情况下可以看作质点,而在有些情况下又不能被看作质点.

  2.理想化的模型到简化,这是一种重要的科学研究方法。

  1.对点电荷概念的解读:

  (1)点电荷是一个忽略大小和形状的几何点,电荷的全部质量全部集中在这个几何点上。

  (2)事实上,任何带电体都有大小和形状,真正的点电荷是不存在的,它是一个理想化模型。

  (3)如果带电体本身的几何线度比起它们之间的距离小得多,带电体的形状、大小和电荷分布对带电体之间的相互作用的影响可以忽略不计,在此情况下,我们可以把带电体抽象成点电荷,可以理解为带电的质点。

  2.对点电荷的应用:

  有一种特殊情况,均匀带电的球体或均匀带电的球面,带电体本身的几何线度可能并不比它们之间的距离小很多,但带电体电荷分布具有对称性,对外所表现的电特性跟一个等效于球心的点电荷的电特性相同,所以均匀带电的球体或均匀带电的球面都可以等效为一个球心处的点电荷,就是通常所说的带电小球。

高二物理教案5

  一、教材分析与教学设计思路

  1教材分析

  互感和自感现象是电磁感应现象的特例。学习它们的重要性在于他们具有实际的应用价值。同时对自感现象的观察和分析也加深了对电磁感应产生条件的理解。

  2学情分析

  互感现象法拉第发现电磁感应现象的第一个成功试验就是互感现象。学生前面探究感应电流条件中也做过类似的试验,已有感性认识。教学要求是知道互感现象。因此教学中教师可做些有趣的演示实验,引导学生利用已学知识进行成因分析,明确尽管两个线圈之间并没有导线连接,却可以使能量由一个线圈传递到另一个线圈。这就是互感现象

  自感现象学生从前面学习的中知道当穿过回路的磁通量发生变化时,会产生感应电动势,这些结论都是通过实验观察得到的,没有理论证明。但同学们观察到的实验都是外界的磁场引起的回路磁通量的变化,善于动脑筋的同学就会产生这样的思考:当变化的电流通过自身线圈,使自身回路产生磁通量的变化,会不会在自己的回路产生电磁感应现象呢所以这节课是学生在已有知识上产生的必然探求欲望,教师应抓住这一点。设计探究性课例。自感电动势对电流变化所起的“阻碍”作用,以及自感电动势方向的是学生学习的难点。为突破难点,教师应通过理论探究和实验验证相结合的方法进行教学,为使效果明显,本人特自制教学仪器。

  3教学设计思路

  为突出物理知识与生活的联系,突出在技术、社会领域的应用,本人设计了让学生体验自感触电,并在探究的过程中,让学生估算自己的`触电电压约150V使学生有真实感。学生分组实验,模拟利用自感点火,使学生知道物理知识的价值。

  二、教学目标

  一知识与技能

  1了解互感现象和自感现象,以及对它们的利用和防止。

  2能够通过电磁感应的有关规律分析通电、断电自感现象的成因,并能利用自感知识解释自感现象。

  3了解自感电动势的计算式,知道自感系数是表示线圈本身特征的物理量,知道它的单位。

  4初步了解磁场具有能量。

  二过程与方法

  1通过人体自感实验,增强学生的体验真实感。激发学生探究欲望

  2通过理论探究和实验设计,培养学生科学探究的方法。加深对电磁感应现象的理解。

  三情感、态度与价值观

  1通过学生体验,激发学生对科学的求知欲和兴趣。

  2理解互感和自感是电磁感应现象的特例,让学生感悟特殊现象中有它的普遍规律,而普遍规律中包含了特殊现象的辩证唯物主义观点。

  根据上述分析与思路确定如下的教学重点与难点。

  三、重难点

  重点:1自感现象产生的原因2自感电动势的方向3自感现象的应用

  难点:自感电动势对电流的变化进行阻碍的认识。

  四、教学方法

  本节课教学采用“引导探究”教学法,该教学法以解决问题为中心,注重分析问题、解决问题能力的培养,充分发挥学生的主动性。其主要程序是:猜想→假设→理论探究科学预测→设计实验→实验验证→得出结论→实际应用。它不仅重视知识的获得,而且更重视学生获取知识的过程及方法,更加突出了学生的学,学生学得主动,学得积极。真正体现了“教为主导,学为主体”的思想。

  五、学法指导课前提出问题,让学生提前思考,见后。

  六、课时分配:

  2课时本课时只学习第一课时。

  七、教学媒体

  教师用:多媒体课件互感变压器自制自感现象演示仪干电池mp3音箱变压器小线圈小灯泡导线若干,

  学生用8人一组:带铁芯的线圈抽掉打火装置的打火机干电池6V电键导线等。

高二物理教案6

  一、教学任务分析

  电磁感应现象是在初中学过的电磁现象和高中学过的电场、磁场的基础上,进一步学习电与磁的关系,也为后面学习电磁波打下基础。

  以实验创设情景,通过对问题的讨论,引入学习电磁感应现象,通过学生实验探究,找出产生感应电流的条件。用现代技术手段“DIS实验”来测定微弱的地磁场磁通量变化产生的感应电流,使学生感受现代技术的重要作用。

  通过“历史回眸”,介绍法拉第发现电磁感应现象的过程,领略科学家的献身精神,懂得学习、继承、创新是科学发展的动力。

  在探究感应电流产生的条件时,使学生感受猜想、假设、实验、比较、归纳等科学方法,经历提出问题→猜想假设→设计方案→实验验证的科学探究过程;在学习法拉第发现电磁感应现象的过程时,体验科学家在探究真理过程中的.献身精神。

  二、教学目标

  1.知识与技能

  (1)知道电磁感应现象及其产生的条件。

  (2)理解产生感应电流的条件。

  (3)学会用感应电流产生的条件解释简单的实际问题。

  2.过程与方法

  通过有关电磁感应的探究实验,感受猜想、假设、实验、比较、归纳等科学方法在得出感应电流产生的条件中的重要作用。

  3.情感、态度价值观

  (1)通过观察和动手操作实验,体验乐于科学探究的情感。

  (2)通过介绍法拉第发现电磁感应现象的过程,领略科学家在探究真理过程中的献身精神。

  三、教学重点与难点

  重点和难点:感应电流的产生条件。

  四、教学资源

  1、器材

  (1)演示实验:

  ①电源、导线、小磁针、投影仪。

  ②10米左右长的电线、导线、小磁针、投影仪。

  (2)学生实验:

  ①条形磁铁、灵敏电流计、线圈。

  ②灵敏电流计、原线圈、副线圈、电键、滑动变阻器、导线若干。

  ③DIS实验:微电流传感器、数据采集器、环形实验线圈。

  2、课件:电磁感应现象flash课件。

  五、教学设计思路

  本设计内容包括三个方面:一是电磁感应现象;二是产生感应电流的条件;三是应用感应电流产生的条件解释简单的实际问题。

  本设计的基本思路是:以实验创设情景,激发学生的好奇心。通过对问题的讨论,引入学习电磁感应现象和感应电流的概念。通过学生探究实验,得出产生感应电流的条件。通过“历史回眸”、“大家谈”,介绍法拉第发现电磁感应现象的过程,领略科学家在探究真理过程中的献身精神。

  本设计要突出的重点和要突破难点是:感应电流的产生条件。方法是:以实验和分析为基础,根据学生在初中和前阶段学习时已经掌握的知识,应用实验和动画演示对实验进行分析,理解产生感应电流的条件,从而突出重点,并突破难点。

  本设计强调问题讨论、交流讨论、实验研究、教师指导等多种教学策略的应用,重视概念、规律的形成过程以及伴随这一过程的科学方法的教育。通过学生主动参与,培养其分析推理、比较判断、归纳概括的能力,使之感受猜想、假设、实验、比较、归纳等科学方法的重要作用;感悟科学家的探究精神,提高学习的兴趣。

  完成本设计的内容约需1课时。

  六、教学流程

  1、教学流程图

  2、流程图说明

  情景 演示实验1 奥斯特实验。

  演示实验2 摇绳发电

  问题:为什么导线中有电流产生?

  活动I 自主活动 学生实验1

  设问:如何使闭合线圈中产生感应电流?

  活动II 学生实验2 探究感应电流产生的条件。

  活动III 历史回眸 法拉第发现电磁感应现象的过程。

  课件演示 电磁感应现象。

  活动Ⅳ DIS学生实验 微弱磁通量变化时的感应电流。

  大家谈

  3、教学主要环节 本设计可分为三个主要的教学环节。

  第一环节,通过实验观察与讨论,得出电磁感应现象与感应电流。

  第二环节,通过学生探究实验,得出感应电流产生的条件;通过 “历史回眸”、“大家谈”,了解法拉第的研究过程,领略科学家的探究精神。

  第三环节,通过DIS实验,了解电磁感应现象在实际生活中的应用。

  七、教案示例

  (一)情景引入:

  1、观察演示实验,提出问题

  1820年,丹麦物理学家奥斯特发现通电直导线能使小磁针发生偏转,从而揭示了电与磁之间的内在联系。

  演示实验1 奥斯特实验。

  那么,磁能生电吗?

  演示实验2 摇绳发电

  把一根长10米左右的电线与一导线的两端连接起来,形成一闭合回路,两个学生迅速摇动电线,另一学生将导线放到小磁针上方,观察小磁针是否偏转。

  问题1:为什么导线中有电流产生?

  2、导入新课

  我们可以用这节课学习的知识来回答上面的问题。

  (二)电磁感应现象

  自奥斯特发现电能生磁之后,历史上许多科学家都在研究“磁生电”这个课题。

  介绍瑞士物理学家科拉顿的研究。

  自主活动:如何使闭合线圈中产生电流?

  学生实验1:把条形磁铁放在线圈中,将灵敏电流计、线圈连成闭合回路,观察灵敏电流计指针是否偏转。

  1、电磁感应现象

  闭合回路中产生感应电流的现象,叫电磁感应现象。

  2、感应电流

  由电磁感应现象产生的电流,叫感应电流。

  介绍英国物理学家、化学家法拉第的研究。

  问题2:法拉第发现的使磁场产生电流的条件究竟是什么?

  (三)产生感应电流的条件

  学生实验2:探究感应电流产生的条件。

  根据所给的器材:灵敏电流计、原线圈、副线圈、电键、滑动变阻器、导线等,设计实验方案,使线圈中产生感应电流。

  小组交流方案,师生共同讨论产生感应电流的原因。

  感应电流产生的条件:闭合回路、磁通量发生变化。

  播放flash课件,进一步理解感应电流产生的条件。

  介绍“历史回眸”栏目中法拉第发现电磁感应现象的过程。

  (四)应用

  讨论、解释:

  1、书上的示例

  2、摇绳发电的原理。

  DIS学生实验:微弱磁通量变化时的感应电流。

  大家谈

  (五)总结(略)

  (六)作业布置(略)

高二物理教案7

  第1节《划时代的发现》

  一、教材分析

  《划时代的发现》是人教版高中物理3-4第四章第一节,本节是让学生体会科学家的思考、研究时的迷失与最后成功,本节是过程与方法、情感、态度与价值观教育的难得素材

  二、教学目标

  1.知识与技能

  (1)知道奥斯特实验、电磁感应现象,

  (2)了解电生磁和磁生电的发现过程,

  (3)知道电磁感应和感应电流的定义。

  2.过程与方法

  (1)通过阅读使学生掌握自然现象之间是相互联系和相互转化的;

  (2)通过学习了解科学家们在探究过程中的失败和贡献,从中学习科学探究的方法和思想。

  (3)领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性

  3.情感、态度与价值观

  (1)通过学习阅读培养学生正确的探究自然规律的科学态度和科学精神;

  (2)领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。

  (3)以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。

  三、教学重点难点

  重点:探索电磁感应现象的历史背景;

  难点:体会人类探究自然规律的科学态度和科学精神

  四、学情分析

  我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。本节课学生认识到探索电磁感应现象的历史背景是关键。

  五、教学方法

  1.讲授法:讲授科学家的艰辛

  2. 实验法:学生自己体会奥斯特实验

  3.学案导学:见后面的学案。

  4.新授课教学基本环节:预习检查、总结疑惑情境导入、展示目标合作探究、精讲点拨反思总结、当堂检测发导学案、布置预习

  六、课前准备

  1.学生的学习准备:预习划时代的发现,初步了解物理学史。分小组6台奥斯特实验装置。

  2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。3.教学环境的设计和布置:分小组合作学习,分6个学习小组。

  七、课时安排:1课时

  八、教学过程

  (一)预习检查、总结疑惑

  检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

  (二)情景导入、展示目标。

  (三)合作探究、精讲点拨。

  探究一:奥斯特梦圆电生磁------电流的磁效应

  引导学生阅读教材有关奥斯特发现电流磁效应的内容。提出以下问题,引导学生思考并回答:

  (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景?

  (2)奥斯特的研究是一帆风顺的吗?奥斯特面对失败是怎样做的?

  (3)奥斯特发现电流磁效应的过程是怎样的?用学过的知识如何解释?

  (4)电流磁效应的发现有何意义?谈谈自己的感受。

  学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。

  教师教学素材:

  到18世纪末,人们开始思考不同自然现象之间的联系,例如:摩擦生热表明了机械运动向热运动转化,而蒸汽机则实现了热运动向机械运动的转化,于是,一些独具慧眼的哲学家如康德等提出了各种自然现象之间的相互联系和转化的思想。由于受康德哲学与谢林等自然哲学家的哲学思想的影响,坚信自然力是可以相互转化的,长期探索电与磁之间的联系。1803年奥斯特指出:物理学将不再是关于运动、热、空气、光、电、磁以及我们所知道的各种现象的零散的罗列,我们将把整个宇宙纳在一个体系中。在此思想的指导下,1820年4月奥斯特发现了电流对磁针的作用,即电流的磁效应。同年7月21日奥斯特又以

  《关于磁针上电冲突作用的实验》为题发表了他的发现。这篇短短的论文使欧洲物理学界产生了极大震动,导致了大批实验成果的出现,由此开辟了物理学的新领域──电磁学。1820年因电流磁效应这一杰出发现获英国皇家学会科普利奖章。1829年起任哥本哈根工学院院长。

  探究二:法拉第心系磁生电------电磁感应现象

  引导学生阅读教材有关法拉第发现电磁感应的内容。提出以下问题,引导学生思考并回答:

  (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点?

  (2)法拉第的研究是一帆风顺的吗?法拉第面对失败是怎样做的?

  (3)法拉第做了大量实验都是以失败告终,失败的原因是什么?

  (4)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的秘诀是什么?

  (5)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。

  学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。

  教师教学素材:

  1820年奥斯特发现电流的磁效应,受到科学界的关注,促进了科学的发展。1821年英国《哲学年鉴》的主编约请戴维撰写一篇文章,评述奥斯特发现以来电磁学实验的理论发展概况。戴维把这一工作交给了法拉第。法拉第在收集资料的过程中,对电磁现象的研究产生了极大的热情,并开始转向电磁学的研究。他仔细地分析了电流的磁效应等现象,认为既然电流能产生磁,磁能否产生电呢?1822年他在日记中写下了自己的思想:磁能转化成电。

  他在这方面进行了系统的研究。起初,他试图用强磁铁靠近闭合导线或用强电流使另一闭合导线中产生电流,做了大量的实验,都失败了。经过历时十年的失败、再试验,直到1831年8月29日才取得成功。他接连又做了几十个这类实验。1831年11月24日的论文中,他把产生感应电流的情况概括成五类:变化着的电流;变化着的磁场;运动的恒定电流;运动的磁场;在磁场中运动的导体。他指出:感应电流与原电流的变化有关,而不是与原电流本身有关。他将这一现象与导体上的静电感应类比,把它取名为电磁感应,产生的电流叫做感应电流。为了解释电磁感应现象,法拉第曾提出过电张力的概念。后来在考虑了电磁感应的各种情况后,认为可以把感应电流的产生归因于导体切割磁力线。在电磁感应现象发现二十年后,直到1851年才得出了电磁感应定律。经过大量实验后,他终于实现了磁生电的夙愿,宣告了电气时代的到来。

  作为19世纪伟大实验物理学家的法拉第。他并不满足于现象的发现,还力求探索现象后面隐藏着的本质;他既十分重视实验研究,又格外重视理论思维的作用。1832年3月12日他写给皇家学会一封信,信封上写有现在应当收藏在皇家学会档案馆里的一些新观点。那时的法拉第已经孕育着电磁波的存在以及光是一种电磁振动的杰出思想,尽管还带有一定的模糊性。为解释电磁感应现象,他提出电致紧张态与磁力线等新概念,同时对当时盛行的超距作用说产生了强烈的怀疑:一个物体可以穿过真空超距地作用于另一个物体,不要任何一种东西的中间参与,就把作用和力从一个物体传递到另一个物体,这种说法对我来说,尤其荒谬。凡是在哲学方面有思考能力的人,决不会陷人这种谬论之中。他开始向长期盘踞在物理学阵地的超距说宣战。与此同时,他还向另一种形而上学观点──流体说进行挑战。1833年,他总结了前人与自己的大量研究成果,证实当时所知摩擦电、伏打电、电磁感应电、温差电和动物电等五种不同来源的电的同一性。他力图解释电流的本质,导致他研究电流通过酸、碱、盐溶液,结果在1833~1834年发现电解定律,开创了电化学这一新的学科领域。他所创造的大量术语沿用至今。电解定律除本身的意义外,也是电的分立性的重要论据。

  1837年他发现电介质对静电过程的影响,提出了以近距邻接作用为基础的静电感应理论。不久以后,他又发现了抗磁性。在这些研究工作的基础上,他形成了电和磁作用通过中间介质、从一个物体传到另一个物体的思想。于是,介质成了场的场所,场这个概念正是来源于法拉第。正如爱因斯坦所说,引入场的概念,是法拉第的最富有独创性的思想,是牛顿以来最重要的发现。牛顿及其他学者的空间,被视作物体与电荷的容器;而法拉第的空间,是现象的容器,它参与了现象。所以说法拉第是电磁场学说的创始人。他的深邃的物理思想,强烈地吸引了年轻的麦克斯韦。麦克斯韦认为,法拉第的电磁场理论比当时流行的超距作用电动力学更为合理,他正是抱着用严格的物理语言来表述法拉第理论的决心闯入电磁学领域的。

  法拉第坚信:物质的力借以表现出的各种形式,都有一个共同的起源,这一思想指导着法拉第探寻光与电磁之间的联系。1822年,他曾使光沿电流方向通过电解波,试图发现偏振面的变化,没有成功。这种思想是如此强烈,执着的追求使他终于在1845年发现强磁场使偏振光的偏振面发生旋转。他的晚年,尽管健康状况恶化,仍从事广泛的研究。他曾分析研究电缆中电报信号迟滞的原因,研制照明灯与航标灯。他的成就来源于勤奋,他的主要著作《日记》由16041则汇编而成;《电学实验研究》有3362节之多。

  他生活简朴,不尚华贵,以致有人到皇家学院实验室作实验时错把他当作守门的老头。1857年,皇家学会学术委员会一致决议聘请他担任皇家学会会长。对这一荣誉职务他再三拒绝。他说:我是一个普通人。如果我接受皇家学会希望加在我身上的荣誉,那么我就不能保证自己的诚实和正直,连一年也保证不了。同样的理由,他谢绝了皇家学院的院长职务。当英王室准备授予他爵士称号时,他多次婉言谢绝说:法拉第出身平民,不想变成贵族。他的好友J.Tyndall对此作了很好的解释:在他的眼中看去,宫廷的华丽,和布来屯(Brighton)高原上面的雷雨比较起来,算得什么;皇家的一切器具,和落日比较起来,又算得什么?其所以说雷雨和落日,是因为这些现象在他的心里,都可以挑起一种狂喜。在他这种人的心胸中,那些世俗的荣华快乐,当然没有价值了。一方面可以得到十五万镑的财产,一方面是完全没有报酬的学问,要在这两者之间去选择一种。他却选定了第二种,遂穷困以终。这就是这位铁匠的儿子、订书匠学徒的郑重选择。1867年8月25日逝世,墓碑上照他的遗愿只刻有他的名字和出生年月。

  后世的人们,选择了法拉作为电容的国际单位,以纪念这位物理学大师。

  科拉顿的失败

  1820年,奥斯特的磁效应发表后,在科学界引起极大反响,科学家想既然电能生磁,反过来磁也能生电。可以说,想实现磁生电是当时许多科学家的愿望,例如,安培、科拉顿等人都曾为之努力过,但是都失败了。在这个问题上,最遗憾的莫过于科拉顿。

  1825年,科拉顿做了这样一个实验,他将一个磁铁插入连有灵敏电流计的螺旋线圈,来观察在线圈中是否有电流产生。但是在实验时,科拉顿为了排除磁铁移动时对灵敏电流计的影响,他通过很长的导线把接在螺旋线圈上的灵敏电流计放到另一间房里他想,反正产生的电流应该是稳定的(当时科学界都认为利用磁场产生的电应该是稳定的.),插入磁铁后,如果有电流,跑到另一间房里观察也来得及就这样,科拉顿开始了实验。然而,无论他跑得多快,他看到的电流计指针都是指在0刻度的位置。

  科拉顿失败了。科拉顿的这个失败,是一个什么样的失败呢?后人有各种各样的议论。

  有人说这是一次成功的失败。因为科拉顿的实验装置设计得完全正确,如果磁铁磁性足够强,导线电阻不大,电流计十分灵敏,那么在科拉顿将磁铁插入螺旋线圈时,电流计的指针确实是摆动了的。也就是说,电磁感应的实验是成功了,只不过科拉顿没有看见,他跑得还是太慢,连电流计指针往回摆也没看见,有人说,这是一次遗憾的失败。因为科拉顿如果有个助手在另外那间房里,或者科拉顿就把电流计放在同一间房里看得见的地方,那么成功的桂冠肯定是属于科拉顿的。

  有人说,这是一次真正的失败。因为科拉顿没能转变思想,没有从稳态的猜想转变到暂态的考虑上来,所以他想不到请个助手帮一下忙、或者把电流计拿到同一间房里来。事实也正是如此,法拉第总结了别人和他自己以前失败的教训,他决定不再固守稳态的猜想,终于在1831年8月,观察到了电磁感应现象。科拉顿只能留下永远的遗憾。

  例1:发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C)

  A.安培 B.赫兹 C.法拉第 D.麦克斯韦

  例2:发现电流磁效应现象的科学家是__奥斯特__,发现通电导线在磁场中受力规律的科学家是_安培_,发现电磁感应现象的科学家是_法拉第_,发现电荷间相互作用力规律的的科学家是_库仑_。

  例3:下列现象中属于电磁感应现象的是(B)

  A.磁场对电流产生力的作用 B.变化的磁场使闭合电路中产生电流

  C.插在通电螺线管中的软铁棒被磁化 D.电流周围产生磁场

  (四)反思总结,当堂检测。

  教师组织学生反思总结本节课的主要内容,并进行当堂检测。

  设计意图:引导学生认识探索电磁感应现象的历史背景并体会人类探究自然规律的科学态度和科学精神。

  (五)发导学案、布置预习。

  在下一节课我们一起来学习探究电磁感应的条件。这节课后大家可以先预习这一部分,着重分析科学家是如何设计实验,如何得出恰当的结论的。并完成本节的课后练习及课后延伸拓展作业。

  设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。

  九、板书设计

  一、奥斯特梦圆电生磁------电流的磁效应

  二、法拉第心系磁生电------电磁感应现象

  十、教学反思

  学生对于课外知识很感兴趣,有些同学有一定的知识基础,也能提出一些有建设性的问题,激发了他们学物理的兴趣。通过这节课的学习我了解到,学生对物理学的发展非常感兴趣,所以在以后的教学中我们应该多介绍一些这样的知识,来丰富学生的知识面,扩宽学生的视野。

  在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!

高二物理教案8

  一、教学目标

  知识与技能:

  1、理解力的分解概念。

  2、知道力的分解是合成的逆运算,并知道力的分解遵循平行四边形定则。

  3、学会按力的实际作用效果分解力。

  4、学会用力的分解知识解释一些简单的物理现象。

  过程与方法:

  通过生活情景的再现和实验模拟体会物理与实际生活的密切联系。

  通过对力的实际作用效果的分析,理解按实际作用效果分解力的意义,并感受具体问题具体分析的方法。情感、态度与价值观:

  通过联系生活实际情景,激发求知__和探究的兴趣。

  通过对力的分解实际应用的分析与讨论,养成理论联系实际的自觉性,培养解决生活实际问题的能力。

  二、教学重点难点

  教学重点:理解力的分解的概念,利用平行四边形定则按力的作用效果进行力的分解。

  教学难点:力的实际作用效果的分析。

  三、教学过程

  (一)引入:

  1、观察一幅打夯的图片,分析为什么需要那么多人一起打夯。

  2、模拟打夯,指出用多个力的共同作用来代替一个力的作用的.实际意义,突出等效替代的思想。

  3、引出力的分解的概念:把一个力分解成几个分力的方法叫力的分解。

  (二)一个力可分解为几个力?

  由打夯的例子可以看出一个力的作用可以分解为任意几个力,最简单的情况就是把一个力分解为两个力。

  (三)一个力分解成两个力遵循什么规则?

  力的分解是力的合成的逆运算,因此把一个力分解为两个分力也遵循平行四边形定则。

  (四)力的分解实例分析

  以一个力为对角线作平行四边形可以作出无数个平行四边形,因此把一个力分解为两个力有无数组解,但如果已知两个分力的方向,那力的分解就只有解了。如何确定两个分力的方向呢?在解决实际问题时要根据力的实际作用效果确定分力的方向。

高二物理教案9

  教学目标

  知识目标

  1、理解磁感应强度B的定义及单位.

  2、知道用磁感线的疏密可以形象直观地反映磁感应强度的大小.

  3、知道什么叫匀强磁场,知道匀强磁场的磁感线的分布情况.

  4、知道什么是安培力,知道电流方向与磁场方向平行时,电流受的安培力为零;电流方向与磁场方向垂直时,电流受安培力的大小.

  5、会用左手定则熟练地判定安培力的方向.

  能力目标

  1、通过演示磁场对电流作用的实验,培养学生总结归纳物理规律的能力.

  2、通过学习左手定则,理解磁场方向、电流方向和安培力方向三者之间的关系,培养学生空间想象能力.

  情感目标

  通过对安培定则的学习,使得学生了解科学的发现不仅需要勤奋的努力,还需要严谨细密的科学态度.

  教学建议

  教材分析

  关于安培力这一重要的内容,需要强调:

  1、安培力的使用条件:磁场均匀,电流方向与磁场方向垂直。

  2、电流方向与磁场方向平行时,安培力具有最小值。电流方向与磁场方向垂直时,安培力具有最大值。

  教法建议

  由于前面我们已经学习过电场的有关知识,讲解时可以将磁场和电场进行类比,以加深学生对磁场的有关知识的理解。例如:电场和磁场相互对比,电场线与磁感线相互对比,磁感应强度与电场强度进行对比等等。

  在上一节的基础上,启发学生回忆电场强度的定义,对比说明引入磁场强度的定义的思路是通过磁场对电流的作用力的研究得出的。为了让学生更好的理解磁场,可以在实验现象的基础上引导学生进行讨论。

  教学设计方案

  安培力磁感应强度

  一、素质教育目标

  (一)知识教学点

  1 、理解磁感应强度B的定义及单位.

  2 、知道用磁感线的疏密可以形象直观地反映磁感应强度的大小.

  3 、知道什么叫匀强磁场,知道匀强磁场的磁感线的分布情况.

  4 、知道什么是安培力,知道电流方向与磁场方向平行时,电流受的安培力为零;电流方向与磁场方向垂直时,电流受安培力的大小

  5 、会用左手定则熟练地判定安培力的方向.

  (二)能力训练点

  1 、通过演示磁场对电流的作用的实验,培养学生利用控制变量法总结归纳物理规律的能力.

  2 、通过学习左手定则,理解磁场方向、电流方向和安培力方向三者之间的关系,培养学生空间想像能力.

  (三)德育渗透点

  通过阅读材料介绍奥斯特发现电流磁效应,说明科学家之所以能取得辉煌的成就,除了本身所具有的聪明才智外,刻苦勤奋地学习和工作,善于捕捉稍纵即逝的灵感更为重要,鼓励和激发学生从现在开始更加发奋地学习,将来为国家做贡献.

  (四)美育渗透点

  通过介绍物理学家安培取得辉煌成就的原因是靠勤奋自学、刻苦钻研的顽强意志,让学生感受物理学家们的'人格美、情操美.

  二、学法引导

  1 、教师通过演示实验法直观教学,决定安培力大小的因素,通过启发讲解,帮助学生归纳总结公式

  及B的定义式.结合练习法使学生掌握左手定则使用.

  2 、学生认真观察实验,在教师启发的指导下总结规律,积极动手动脑理解公式,掌握左手定则的应用.

  三、重点·难点·疑点及解决办法

  1 、重点

  (1)理解磁场对电流的作用力大小的决定因素,掌握电流与磁场垂直时,安培力大小为:

  (2)掌握左手定则.

  2 、难点

  对左手定则的理解.

  3 、疑点

  磁场方向、电流方向和安培力方向三者之间的空间关系.

  4 、解决办法

  以演示实验为突破口,直观地引导学生掌握电流在磁场中所受安培力大小的决定因素;反复地借助实验,来理解左手定则,建立磁场方向、电流方向和安培力方向三者关系的正确图景.

  四、课时安排

  1课时

  五、教具学具准备

  铁架台、三个相同的蹄形磁铁、电源、滑动变阻器、电键、导线.

  六、师生互动活动设计

  教师先通过实验,学生观察分析、讨论、总结出安培力公式,再引入磁感强度B的定义式,通过讲解类比电场强度,启发学生理解公式

  的意义,借助墙角(或桌角)帮助学生建立三维坐标空间,理解掌握左手定同.

  七、教学步骤

  (一)明确目标

  (略)

  (二)整体感知

  本节教学是在上一节学习了磁场的概念及方向性的基础上,进一步认识磁场的强弱性质,根据磁场力的性质用定义法定义B描述磁场的强弱,用磁感线形象地反映磁场的强弱,同时利用定义式来计算安培力的大小,再用左手定则来确定磁场方向、电流方向和安培力的方向.

  (三)重点、难点的学习与目标完成过程

  1 、磁场对电流的作用

  用条形磁铁可以在一定的距离内吸起较小质量的铁块,巨大的电磁铁却能吸起成吨的钢块,表明磁场有强有弱,如何表示磁场的强弱呢?我们利用磁场对电流的作用力——安培力来研究磁场的强弱.

  2 、决定安培力大小的因素有哪些?

  利用演示实验装置,研究安培力大小与哪些因素有关

  (1)与电流的大小有关.

  保持导线在磁铁中所处的位置及与磁场方向不变这两个条件下,通过移动滑动变阻器触头改变导线中电流的大小.

  请学生观察实验现象.导线摆动的角度大小随电流的改变而改变,电流大,摆角大;电流小,摆角小.

  实验结论:垂直于磁场方向的通电直导线,受到磁场的作用力的大小眼导线中电流的大小有关,电流大,作用力大;电流小,作用力也小.

  (2)与通电导线在磁场中的长度有关.

  保持导线在磁铁中所处的位置及方向不变,电流大小也不变,改变通电电流部分的长度.学生观察实验现象.导线摆动的角度大小随通电导线长度而改变,导线长、摆角大;导线短,摆角小.

  实验结论:垂直于磁场方向的通电直导线,受到的磁场的作用力的大小限通电导线在磁场中的长度有关,导线长、作用力大;导线短,作用力小.

  (3)与导线在磁场中的放置方向有关.

  保持电流的大小及通电导线的长度不变,改变导线与磁场方向的夹角,当夹角为0 °时,导线不动,即电流与磁场方向平行时不受安培力作用;当夹角增大到90 °的过程中,导线摆角不断增大,即电流与磁场方向垂直时,所受安培力最大;不平行也不垂直时,安培力大小介于和最大值之间.

  3 、磁感应强度

  总结归纳以上实验现象,用L表示通电导线长度,I表示电流,保持电流和磁场方向垂直,通电导线所受的安培力大小FIL

  用B表示这一比值,有B的物理意义为:通电导线垂直置于磁场同一位置,B值保持不变;若改变通电导线的位置,B值随之改变.表明B值的大小是由磁场本身的位置决定为.对于电流和长度相同的导线,放置在B值大的位置受的安培力F也大,表明磁场强.放在B值小的位置受的安培力F也小,表明磁场弱

  4 、安培力的大小和方向.

  根据磁感应强度的定义式,可得通电导线垂直磁场方向放置时所受的安培力大小为:

  举例计算安培力的大小.

  安培力的方向如何呢?还过前面的演示实验现象可知,通电导线在磁场中受到的安培力方向跟导线中的电流方向、磁场方向都有关系.人们通过大量的实验研究,总结出通电导线受安培力方向和电流方向、磁场方向存在着一个规律——左手定则.

  左手定则:伸开左手,使大拇指跟其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流方向,那么,拇指所指的方向,就是通电导线在磁场中的受力方向.

  应该注意的是:若电流方向和磁场方向垂直,则磁场力的方向、电流方向、磁场方向三者互相垂直;若电流方向和磁场方向不垂直,则磁场力的方向仍垂直于电流方向,也同时垂直于磁场方向.

  (四)总结、扩展

  本节课我们学习了磁场对电流的作用——安培力,通过研究安培力的大小,我们定义了反映磁场强弱的物理量——磁感应强度

  八、布置作业

  九、 板书设计

高二物理教案10

  【教学目标】

  知识与技能

  1.知道曲线运动的方向,理解曲线运动的性质

  2.知道曲线运动的条件,会确定轨迹弯曲方向与受力方向的关系过程与方法

  1.体验曲线运动与直线运动的区别

  2.体验曲线运动是变速运动及它的速度方向的变化

  情感态度与价值观

  能领会曲线运动的奇妙与和谐,培养对科学的好奇心和求知欲

  【教学重点】

  1.什么是曲线运动

  2.物体做曲线运动方向的判定3.物体做曲线运动的条件

  【教学难点】

  物体做曲线运动的条件

  【教学课时】

  1课时

  【探究学习】

  1、曲线运动:__________________________________________________________2、曲线运动速度的方向:

  质点在某一点的速度,沿曲线在这一点的方向。3、曲线运动的条件:

  (1)时,物体做曲线运动。(2)运动速度方向与加速度的方向共线时,运动轨迹是___________

  (3)运动速度方向与加速度的方向不共线,且合力为定值,运动为_________运动。(4)运动速度方向与加速度的方向不共线,且合力不为定值,运动为___________运动。4、曲线运动的性质:

  (1)曲线运动中运动的方向时刻_______(变、不变),质点在某一时刻(某一点)的速度方向是沿__________________________________________,并指向运动轨迹凹下的一侧。

  (2)曲线运动一定是________运动,一定具有_________。

  【课堂实录】

  【引入新课】

  生活中有很多运动情况,我们学习过各种直线运动,包括匀速直线运动,匀变速直线运动等,我们知道这几种运动的共同特点是物体运动方向不变。下面我们就来欣赏几组图片中的物体有什么特点(展示图片)

  再看两个演示

  第一,自由释放一只较小的粉笔头

  第二,平行抛出一只相同大小的粉笔头

  两只粉笔头的运动情况有什么不同?学生交流讨论。

  结论:前者是直线运动,后者是曲线运动

  在实际生活普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。新课讲解

  一、曲线运动

  1.定义:运动的轨迹是曲线的运动叫做曲线运动。

  2.举出曲线运动在生活中的实例。

  问题:曲线运动中速度的方向是时刻改变的,怎样确定做曲线运动的物体在任意时刻速度的方向呢?

  引出下一问题。

  二、曲线运动速度的方向

  看图片:撑开带有水滴的`雨伞绕柄旋转。

  问题:水滴沿什么方向飞出?学生思考

  结论:雨滴沿飞出时在那点的切线方向飞出。

  如果球直线上的某处A点的瞬时速度,可在离A点不远处取一B点,求AB点的平均速度来近似表示A点的瞬时速度,时间取得越短,这种近似越精确,如时间趋近于零,那么AB见的平均速度即为A点的瞬时速度。

  结论:质点在某一点的速度方向,沿曲线在这一点的切线方向。三、物体做曲线运动的条件

  实验1:在光滑的水平面上具有某一初速度的小球,在不受外力作用时将如何运动?学生实验

  结论:做匀速直线运动。

  实验2:在光滑的水平面上具有某一初速度的小球,在运动方向的正前方或正后方放一条形

  磁铁,小球将如何运动?学生实验

  结论:小球讲做加速直线运动或者减速直线运动。

  实验3:在光滑的水平面上具有某一初速度的小球,在运动方向一侧放一条形磁铁,小球将

  如何运动?学生实验

  结论:小球将改变轨迹而做曲线运动。

  总结论:曲线运动的条件是,

  当物体所受合力的方向跟物体

  运动的方向不在同一条直线时,物体就做曲线运动。

  四、曲线运动的性质

  问题:曲线运动是匀速运动还是变速运动学生思考讨论问题引导:

  速度是(矢量、标量),所以只要速度方向变化,速度矢量就发生了,也就具有,因此曲线运动是。结论:曲线运动是变速运动。

  【课堂训练】

  例题1、已知物体运动的初速度v的方向及受恒力的方向如图所示,则图中可能正确的运动

  例题2、一个质点受到两个互成锐角的F1和F2的作用,有静止开始运动,若运动中保持力的方向不变,但F1突然增大到F1+F,则此质点以后做_______________________解析:

  例题3、一个物体在光滑的水平面上以v做曲线运动,已知运动过程中只受一个恒力作用,

  运动轨迹如图所示,则,自M到N的过程速度大小的变化为________________________请做图分析:

  【课堂小结】

  1.曲线运动是变速运动,及速度的有可能变化,速度的方向一定变化。

  2.当物体所受合力的方向跟物体运动的方向不在同一条直线时,物体就做曲线运动,所

  以物体的加速度方向也跟速度方向不在同一直线上。

  【板书设计】

  第一节抛体运动

  1、曲线运动

  定义:运动的轨迹是曲线的运动叫做曲线运动。2、曲线运动速度的方向

  质点在某一点的速度,沿曲线在这一点的切线方向3、曲线运动的条件

  当物体所受合力的方向跟物体运动的方向不在同一条直线时,物体就做曲线运动。4、曲线运动的性质

  曲线运动过程中,速度方向始终在变化,因此曲线运动是变速运动。

  【训练答案】

  例1、B例2、匀变速曲线运动例3、自M到N速度变大(因为速度与力的夹角为锐角。

高二物理教案11

  知识目标:

  1、了解万有引力定律得出的思路和过程。

  2、理解万有引力定律的含义并会推导万有引力定律。

  3、知道任何物体间都存在着万有引力,且遵守相同的规律

  能力目标:

  1、培养学生研究问题时,抓住主要矛盾,简化问题,建立理想模型的处理问题的能力。

  2、训练学生透过现象(行星的运动)看本质(受万有引力的作用)的判断、推理能力

  德育目标:

  1、通过牛顿在前人的基础上发现万有引力定律的思考过程,说明科学研究的长期性,连续性及艰巨性,渗透科学发现的方_育。

  2、培养学生的猜想、归纳、联想、直觉思维能力。

  教学重难点

  教学重点:

  月——地检验的推倒过程

  教学难点:

  任何两个物体间都存在万有引力

  教学过程

  (一)引入:

  太阳对行星的引力是行星做圆周运动的向心力,,这个力使行星不能飞离太阳;地面上的物体被抛出后总要落到地面上;是什么使得物体离不开地球呢?是否是由于地球对物体的引力造成的呢?

  若真是这样,物体离地面越远,其受到地球的引力就应该越小,可是地面上的物体距地面很远时受到地球的引力似乎没有明显减小。如果物体延伸到月球那里,物体也会像月球那样围绕地球运动。地球对月球的引力,地球对地面上的物体的引力,太阳对行星的引力,是同一种力。你是这样认为的吗?

  (二)新课教学:

  一.牛顿发现万有引力定律的过程

  (引导学生阅读教材找出发现万有引力定律的思路)

  假想,理论推导,实验检验

  (1)牛顿对引力的思考

  牛顿看到了苹果落地发现了万有引力,这只是一种传说。但是,他对天体和地球的引力确实作过深入的思考。牛顿经过长期观察研究,产生如下的假想:太阳、行星以及离我们很远的恒星,不管彼此相距多远,都是互相吸引着,其引力随距离的增大而减小,地球和其他行星绕太阳转,就是靠劂的引力维持。同样,地球不仅吸引地面上和表面附近的物体,而且也可以吸引很远的物体(如月亮),其引力也是随距离的增大而减弱。牛顿进一步猜想,宇宙间任何物体间都存在吸引力,这些力具有相同的本质,遵循同样的力学规律,其大小都与两者间距离的平方成反比。

  (2)牛顿对定律的推导

  首先,要证明太阳的引力与距离平方成反比,牛顿凭着他对于数学和物理学证明的惊人创造才能,大胆地将自己从地面上物体运动中总结出来的运动定律,应用到天体的运动上,结合开普勒行星运动定律,从理论上推导出太阳对行星的引力F与距离r的平方成反比,还证明引力跟太阳质量M和行星质量m的乘积成正比,牛顿再研究了卫星的运动,结论是:

  它们间的引力也是与行星和卫星质量的乘积成正比,与两者距离的平方成反比。

  (3)。牛顿对定律的检验

  以上结论是否正确,还需经过实验检验。牛顿根据观测结果,凭借理想实验巧妙地解决了这一难题。

  牛顿设想,某物体在地球表面时,其重力加速度为g,若将它放到月球轨道上,让它绕地球运动时,其向心加速度为a。如果物体在地球上受到的重力F1,和在月球轨道上运行时受到的作用力F2,都是来自地球的吸引力,其大小与距离的平方成反比,那么,a和g之间应有如下关系:

  已知月心和地心的距离r月地是地球半径r地的60倍,得。

  从动力学角度得出的这一结果,与前面用运动学公式算出的数据完全一致,

  牛顿证实了关于地球和物体间、各天体之间的引力都属于同一种性质力,都遵循同样的力学规律的假想是正确的。牛顿把这种引力规律做了合理的推广,在1687年发表了万有引力定律。可以用下表来表达牛顿推证万有引力定律的思路。

  (引导学生根据问题看书,教师引导总结)

  (1)什么是万有引力?并举出实例。

  (2)万有引力定律怎样反映物体之间相互作用的规律?其数学表达式如何?

  (3)万有引力定律的适用条件是什么?

  二.万有引力定律

  1、内容:自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量乘积成正比,跟它们的距离的二次方成反比;引力的方向沿着二者的连线。

  2.公式:

  3.各物理量的含义及单位:

  F为两个物体间的引力,单位:N.

  m1、m2分别表示两个物体的质量,单位:kg

  r为它们间的距离,单位:m

  G为万有引力常量:G=6.67×10-11N·m2/kg2,单位:N·m2/kg2.

  4.万有引力定律的理解

  ①万有引力F是因为相互作用的物体有质量而产生的引力,与初中学习的电荷间的引力、磁极间的引力不同。

  强调说明:

  A.万有引力的普遍性.万有引力不仅存在于星球间,任何客观存在的有质量的物体间都存在这种相互吸引的力.

  B.万有引力的相互性.两个物体相互作用的引力是一对相互作用的作用力与反作用力,它们大小相等,方向相反,分别作用在两个物体上.

  C.万有引力的宏观性.在通常情况下,万有引力非常小,只有在质量巨大的星球间或天体与天体附近的'物体间,它的存在才有实际的物理意义.

  D.万有引力的独立性.两物体间的万有引力只与它们本身的质量有关,而与所在空间的性质无关,也与周围有无其他物体无关.

  ②r为两个物体间距离:

  A、若物体可以视为质点,r是两个质点间的距离。

  B、若是规则形状的均匀物体相距较近,则应把r理解为它们的几何中心的距离。

  C、若物体不能视为质点,则可把每一个物体视为若干个质点的集合,然后按万有引力定律求出各质点间的引力,再按矢量法求它们的合力。

  ③G为万有引力常量,在数值上等于质量都是1kg的两物体相距1m时的相互作用的引力

  随堂练习:

  1、探究:叫两名学生上讲台做两个游戏:一个是两人靠拢后离开三次以上,二个是叫两人设法跳起来停在空中看是否能做到。然后设问:既然自然界中任何两个物体间都有万有引力,那么在日常生活中,我们各自之间或人与物体之间,为什么都对这种作用没有任何感觉呢?

  具体计算:地面上两个50kg的质点,相距1m远时它们间的万有引力多大?已知地球的质量约为6.0×1024kg,地球半径为6.4×106m,则这个物体和地球之间的万有引力又是多大?(F1=1.6675×10-7N,F2=493N)

  (学生计算后回答)

  本题点评:由此可见通常物体间的万有引力极小,一般不易感觉到。而物体与天体间的万有引力(如人与地球)就不能忽略了。

  2、要使两物体间万有引力减小到原来的1/4,可采用的方法是()

  A.使两物体的质量各减少一半,距离保持不变

  B.使两物体间距离增至原来的2倍,质量不变

  C.使其中一个物体质量减为原来的1/4,距离不变

  D.使两物体质量及它们之间的距离都减为原来的1/4

  答案:ABC

  3.设地球表面重力加速度为,物体在距离地心4R(R是地球的半径)处,由于地球的作用而产生的加速度为g,则为()

  A.1B1/9C.1/4D.1/16

  提示:两处的加速度各由何力而产生?满足何规律?

  答案:D

  三.引力恒量的测定

  牛顿发现了万有引力定律,却没有给出引力恒量的数值。由于一般物体间的引力非常小,用实验测定极其困难。直到一百多年之后,才由英国的卡文迪许用精巧的扭秤测出。

  (1)用扭秤测定引力恒量的方法

  卡文迪许解决问题的思路是:将不易观察的微小变化量,转化为容易观察的显著变化量,再根据显著变化量与微小量的关系,算出微小变化量。

  问:卡文迪许扭秤实验中如何实现这一转化?

  测引力(极小)转化为测引力矩,再转化为测石英丝扭转角度,最后转化为光点在刻度尺上移动的距离(较大)。根据预先求出的石英丝扭转力矩跟扭转角度的关系,可以证明出扭转力矩,进而求得引力,确定引力恒量的值。

  卡文迪许在测定引力恒量的同时,也证明了万有引力定律的正确性。

  (四)、小结

  本节课重点学习了万有引力定律的内容、表达式、理解以及简单的应用重点理解定律的普遍性、普适性,对万有引力的性质有深层的认识

  对万有引力定律的理解应注意以下几点:

  (1)万有引力的普遍性。它存在于宇宙中任何有质量的物体之间,不管它们之间是否还有其他作用力。

  (2)万有引力恒量的普适性。它是一个仅和m、r、F单位选择有关,而与物体性质无关的恒量。

  (3)两物体间的引力,是一对作用力和反作用力。

  (4)万有力定律只适用于质点和质量分布均匀球体间的相互作用。

  课后习题

  课本71页:2、3

  板书

  万有引力定律

  1、万有引力定律的推导:

  2、万有引力定律

  ①内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。

  ②公式:

  G是引力常量,r为它们间的距离

  ③各物理量的含义及单位:

  ④万有引力定律发现的重要意义:

  3.引力恒量的测定

  4.万有引力定律的理解

  ①万有引力F是因为相互作用的物体有质量而产生的引力,与初中学习的电荷间的引力、磁极间的引力不同。

  强调说明:

  A.万有引力的普遍性.万有引力不仅存在于星球间,任何客观存在的有质量的物体间都存在这种相互吸引的力.

  B.万有引力的相互性.两个物体相互作用的引力是一对相互作用的作用力与反作用力,它们大小相等,方向相反,分别作用在两个物体上.

  C.万有引力的宏观性.在通常情况下,万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际的物理意义.

  D.万有引力的独立性.两物体间的万有引力只与它们本身的质量有关,而与所在空间的性质无关,也与周围有无其他物体无关.

  ②r为两个物体间距离:

  A、若物体可以视为质点,r是两个质点间的距离。

  B、若是规则形状的均匀物体相距较近,则应把r理解为它们的几何中心的距离。

  C、若物体不能视为质点,则可把每一个物体视为若干个质点的集合,然后按万有引力定律求出各质点间的引力,再按矢量法求它们的合力。

  ③G为万有引力常量,在数值上等于质量都是1kg的两物体相距1m时的相互作用的引力。

高二物理教案12

  教学目标

  知识目标

  (1)通过演示实验认识加速度与质量和和合外力的定量关系;

  (2)会用准确的文字叙述牛顿第二定律并掌握其数学表达式;

  (3)通过加速度与质量和和合外力的定量关系,深刻理解力是产生加速度的原因这一规律;

  (4)认识加速度方向与合外力方向间的矢量关系,认识加速度与和外力间的瞬时对应关系;

  (5)能初步运用运动学和牛顿第二定律的知识解决有关动力学问题.

  能力目标

  通过演示实验及数据处理,培养学生观察、分析、归纳总结的能力;通过实际问题的处理,培养良好的书面表达能力.

  情感目标

  培养认真的科学态度,严谨、有序的思维习惯.

  教学建议

  教材分析

  1、通过演示实验,利用控制变量的方法研究力、质量和加速度三者间的关系:在质量不变的前题下,讨论力和加速度的关系;在力不变的前题下,讨论质量和加速度的关系.

  2、利用实验结论总结出牛顿第二定律:规定了合适的力的单位后,牛顿第二定律的表达式从比例式变为等式.

  3、进一步讨论牛顿第二定律的确切含义:公式中的表示的是物体所受的合外力,而不是其中某一个或某几个力;公式中的和均为矢量,且二者方向始终相同,所以牛顿第二定律具有矢量性;物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化,这就是牛顿第二定律的瞬时性.

  教法建议

  1、要确保做好演示实验,在实验中要注意交代清楚两件事:只有在砝码质量远远小于小车质量的前题下,小车所受的拉力才近似地认为等于砝码的重力(根据学生的实际情况决定是否证明);实验中使用了替代法,即通过比较小车的位移来反映小车加速度的大小.

  2、通过典型例题让学生理解牛顿第二定律的确切含义.

  3、让学生利用学过的重力加速度和牛顿第二定律,让学生重新认识出中所给公式.

  教学设计示例

  教学重点:牛顿第二定律

  教学难点:对牛顿第二定律的理解

  示例:

  一、加速度、力和质量的关系

  介绍研究方法(控制变量法):先研究在质量不变的`前题下,讨论力和加速度的关系;再研究在力不变的前题下,讨论质量和加速度的关系.介绍实验装置及实验条件的保证:在砝码质量远远小于小车质量的条件下,小车所受的拉力才近似地认为等于砝码的重力.介绍数据处理方法(替代法):根据公式可知,在相同时间内,物体产生加速度之比等于位移之比.

  以上内容可根据学生情况,让学生充分参与讨论.本节书涉及到的演示实验也可利用气垫导轨和计算机,变为定量实验.

  1、加速度和力的关系

  做演示实验并得出结论:小车质量相同时,小车产生的加速度与作用在小车上的力成正比,即,且方向与方向相同.

  2、加速度和质量的关系

  做演示实验并得出结论:在相同的力F的作用下,小车产生的加速度与小车的质量成正比,即.

  二、牛顿第二运动定律(加速度定律)

  1、实验结论:物体的加速度根作用力成正比,跟物体的质量成反比.加速度方向跟引起这个加速度的力的方向相同.即,或.

  2、力的单位的规定:若规定:使质量为1kg的物体产生1m/s2加速度的力叫1N.则公式中的=1.(这一点学生不易理解)

  3、牛顿第二定律:

  物体的加速度根作用力成正比,跟物体的质量成反比.加速度方向跟引起这个加速度的力的方向相同.

  数学表达式为:.或

  4、对牛顿第二定律的理解:

  (1)公式中的是指物体所受的合外力.

  举例:物体在水平拉力作用下在水平面上加速运动,使物体产生加速度的合外力是物体

  所受4个力的合力,即拉力和摩擦力的合力.(在桌面上推粉笔盒)

  (2)矢量性:公式中的和均为矢量,且二者方向始终相同.由此在处理问题时,由合外力的方向可以确定加速度方向;反之,由加速度方向可以找到合外力的方向.

  (3)瞬时性:物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化.

  举例:静止物体启动时,速度为零,但合外力不为零,所以物体具有加速度.

  汽车在平直马路上行驶,其加速度由牵引力和摩擦力的合力提供;当刹车时,牵引力突然消失,则汽车此时的加速度仅由摩擦力提供.可以看出前后两种情况合外力方向相反,对应车的加速度方向也相反.

  (4)力和运动关系小结:

  物体所受的合外力决定物体产生的加速度:

  当物体受到合外力的大小和方向保持不变、合外力的方向和初速度方向沿同一直线且方向相同——→物体做匀加速直线运动

  当物体受到合外力的大小和方向保持不变、合外力的方向和初速度方向沿同一直线且方向相反——→物体做匀减速直线运动

  以上小结教师要带着学生进行,同时可以让学生考虑是否还有其它情况,应满足什么条件.

  探究活动

  题目:验证牛顿第二定律

  组织:2-3人小组

  方式:开放实验室,学生实验.

  评价:锻炼学生的实验设计和操作能力.

高二物理教案13

  一、教学目标

  1.知识目标:

  (1)通过本节课的复习,进一步加深对电场概念的理解,使学生明确场的特点,描写场的方法,并能在头脑中建立起场的模型和图象。

  (2)加深理解场电荷、检验电荷的概念,深刻理解和掌握电场强度的概念。

  (3)能够运用点电荷的电场强度公式进行简单运算。

  (4)进一步理解和掌握电场的叠加原理,会计算简单的点电荷组产生的电场。

  2.能力目标:

  能够运用所学概念、公式进行简单运算,形成一定的解题能力。

  二、教学重点、难点

  1.进一步深刻理解电场和电场强度的概念是本节课的重点。

  2.熟练应用电场强度的概念、场的叠加原理解决有关问题是本节的难点。

  三、教学方法:

  讲练结合,启发式教学

  四、教具:

  幻灯片,上节课所用的课件

  五、教学过程:

  (一)复习提问

  1.什么是电场?电场最基本的特性是什么?

  2.用什么物理量来描述电场的强弱?是怎样定义的?是矢量还是标量?

  3.电场强度的方向是怎样规定的?计算公式你知道有几个?应用时需要注意什么?

  4.什么是电场的叠加原理?

  引导学生回答:

  1.电场的概念:

  (1)电场是存在于电荷周围空间里的一种特殊物质。

  只要有电荷存在,电荷周围就存在着电场。

  (2)电场的基本性质:电场对放在其中的电荷有力的作用。

  (这种力叫电场力)

  2.电场强度:

  (1)用电场强度来描述。定义:物理学中把放入电场中某一点的检验电荷受到的电场力与它的电量的比值叫做这一点的电场强度。简称场强。

  (2)定义式:

  (适用于任何电场)

  (3)E的方向:

  E和力F一样,也是矢量。我们规定电场中某点的场强方向与正电荷在该点所受电场力的方向相同,那么负电荷所受电场力的方向与电场强度方向相反。

  (4)E的单位:在国际单位制中E的单位:牛/库(N/C)

  (5)E的物理意义:

  ①描述某点电场的强弱和方向,是描述电场力的性质的物理量,是矢量。

  ②某点的场强E的大小和方向取决于电场,与检验电荷的正负、电量及受到的电场力F无关。

  ③只能用来量度电场强弱,而不能决定电场强弱。

  ④为定义式,适用于一切电场

  3.点电荷电场的场强:

  a、表达式:(此式为决定式,只适用于真空中点电荷的电场)

  b、方向:若Q为正电荷,E的方向背离Q,若Q为负电荷,E的方向指向Q。

  c、几个点电荷同时存在的空间的电场叠加(场的叠加原理)

  如果一个电场由n个点电荷共同激发时,那么电场中任一点的总场强将等于n个点电荷在该点各自产生场强的矢量和。

  (应用平行四边形法则)

  4、电场力F:

  (1)概念:电场力是电荷在电场中受到电场的作用力。

  (2)关系:电荷在电场中某点所受到的电场力F由电荷所带电量q与电场在该点的电场强度E两因素决定。即:

  ①大小:F=qE(电场力的决定式,F和q、E都有关)

  ②方向:正电荷受电场力方向与E相同,负电荷受电场力方向与E相反。

  5、电场强度E和电场力F是两个不同概念

  注意点:

  1、对象不同

  2、决定因素不同

  3、方向不一定相同

  4、单位不同

  (二)进行新课

  1.作业讲评

  根据上节课学生作业中出现的问题进行适当评析。

  2.例题精讲

  【例1】带电小球A、C相距30cm,均带正电.当一个带有负电的小球B放在A、C间连线的直线上,且B、C相距20cm时,可使C恰受电场力平衡.A、B、C均可看成点电荷.

  ①A、B所带电量应满足什么关系?

  ②如果要求A、B、C三球所受电场力同时平衡,它们的电量应满足什么关系?

  学生读题、思考,找学生说出解决方法.

  通过对此题的分析和求解,可以加深对场强概念和场强叠加的理解.学生一般从受力平衡的角度进行分析,利用库仑定律求解.在学生解题的基础上做以下分析.

  分析与解:

  ①C处于平衡状态,实际上是要求C处在A、B形成的电场中的电场强度为零的地方.

  既然C所在处的合场强为零,那么,C所带电量的正或负、电量的多或少均对其平衡无影响.

  ②再以A或B带电小球为研究对象,利用上面的方法分析和解决.

  答案:①qA∶qB=9∶4,②qA∶qB∶qC=9∶4∶36.

  【例2】如图所示,半经为r的硬橡胶圆环上带有均匀分布的正电荷,其单位长度上的带电量为q,现截去环上一小段AB,AB长为(<<),则剩余部分在圆环中心处O点产生的场强多大?方向如何?

  学生思考、讨论,可以请学生谈他们的认识与理解.

  通过本题的求解,使学生加强对电场场强叠加的应用能力和加深对叠加的理解.

  分析与解:

  解法之一,利用圆环的对称性,可以得出这样的结果,即圆环上的任意一小段在圆心处所产生的电场场强,都与相对应的一小段产生的场强大小相等,方向相反,相互叠加后为零.由于AB段被截掉,所以,本来与AB相对称的那一小段所产生的场强就成为了整个圆环产生的电场的合场强。因题目中有条件<<,所以这一小段可以当成点电荷,利用点电荷的场强公式可求出答案.

  解法之二,将AB段看成是一小段带正电和一小段带负电的圆环叠放,这样仍与题目的条件相符.而带正电的小段将圆环补齐,整个带电圆环在圆心处产生的电场的场强为零;带负电的一小段在圆心处产生的.场强可利用点电荷的场强公式求出,这就是题目所要求的答案.

  答案:方向指向AB

  练习:如图所示,等边三角形ABC的边长为a,在它的顶点B、C上各有电量为Q(>0)的点电荷.试求三角形中心处场强E的大小和方向.

  学生自己练习求解,以巩固概念.

  通过此题的求解,进一步巩固对场强矢量性的认识和场强叠加理解.

  3.课堂练习

  (1)下列说法中正确的是

  A.只要有电荷存在,电荷周围就一定存在着电场。

  B.电场是一种物质,它与其他物质一样,是不依赖于我们的感觉而客观存在的。

  C.电荷间的相互作用是通过电场而产生的。

  D.电场最基本的性质是对处在它里面的电荷有力的作用。

  (2)下列说法中正确的是

  A.电场强度反映了电场的力的性质,因此场中某点的场强与检验电荷在该点所受的电场力成正比。

  B.场中某点的场强等于,但与检验电荷的受力及带电量无关。

  C.场中某点的场强方向即检验电荷在该点的受力方向。

  D.公式和对于任何静电场都是适用的

  (3)下列说法中正确的是

  A.场强的定义式中,F是放入电场中的电荷所受的力,q是放入电场中的电荷的电量。

  B.场强的定义式中,F是放入电场中的电荷所受的力,q是产生电场的电荷的电量。

  C.在库仑定律的表达式中,是点电荷Q2产生的电场在Q1处的场强的大小。

  D.无论定义式

  中的q值如何变化,在电场中的同一点,F与q的比值始终不变。

  (4)讨论电场力与电场强度的区别。

  物理量

  比较内容电场力电场强度

  区别物理意义电荷在电场中所受的力反映电场的力的属性

  决定因素由电荷和电场共同决定仅由电场自身决定

  大小F=qEE=F/q

  方向正电荷受力与E同向

  负电荷受力与E同向规定E的方向为正电荷在该点的受力方向

  单位NN/C或V/m

  联系F=qE(普遍适用)

  (三)小结与反馈练习:

  (1)不能说成E正比于F,或E正比于1/q。

  (2)检验电荷q在周围是否产生电场?该电场对电源电荷Q有无作用?若有,作用力大小为多大?该点的场强又为多大?

  (3)在求电场强度时,不但要计算E的大小,还需强调E的方向。

  (四)作业布置:

  1.为了确定电场中P点的电场强度大小,用细丝线悬挂一个带负电荷的小球去探测。当球在P点静止后,测出悬线与竖直方向夹角为37°。已知P点场强方向在水平方向上,小球重力为4.0×10-3N。所带电量为0.01C,取Sin37°=0.6,则P点的电场强度大小是多少?

  2.真空中,A、B两点上分别放置异种点电荷Q1、Q2,已知两点电荷间引力为1N,Q1=1×10-5C,Q2=-1×10-6C。移开Q1,则Q2在A处产生的场强大小是___________N/C,方向是___________;若移开Q2,则Q1在B处产生的场强大小是____________N/C,方向是___________

  3.在x轴上有两个点电荷,一个带正电Q1,一个带负电-Q2,且Q1=2Q2.用E1和E2分别表示两个电荷所产生的场强的大小,则在X轴上[]

  A.E1=E2之点只有一处,该处合场强为0

  B.E1=E2之点共有两处:一处合场强为0,另一处合场强为2E2

  C.E1=E2之点共有三处:其中两处合场强为0,另一处合场强为2E2

  D.E1=E2之点共有三处:其中一处合场强为0,另两处合场强为2E2

  说明:学习本节课需要注意的问题

  1.场强是表示电场强弱的物理量,因而在引入电场强度的概念时,应该使学生了解什么是电场的强弱,同一个电荷在电场中的不同点受到的电场力的大小是不同的,所受电场力大的点,电场强。

  2.应当使学生理解为什么可以用比值F/q来表示电场强度,知道这个比值与电荷q无关,是反映电场性质的物理量。

  比值定义一个新的物理量是物理学中常用的方法,应结合学生前面学过的类似的定义方法,让学生领会电场强度的定义

高二物理教案14

  学习目标:

  1、知道是状态参量,什么是平衡态

  2、理解热平衡的概念及热平衡定律,体会生活中的热平衡现象。了解热力学温度的应用

  3、理解温度的意义

  4、知道常见温度计的构造,会使用常见的温度计

  5、掌握温度的定义,知道什么是温标、热力学温标,以及热力学温度的表示。理解摄氏温度与热力学温度的转换关系。

  重点难点: 热平衡定律又叫热力学第零定律是本节的重点

  学习方法: 自主学习,合作完成、教师点拨

  学习过程:

  【导读与导思】仔细反复研读教材初步掌握本节内容,完成下列任务

  1、状态参量:在研究系统的各种性质(包括几何性质、力学性质、热学性质、电磁性质等等)时需要用到一些物理量,例如,用体积描述它的几何性质,用压强描述力学性质,用温度描述热学性质,等等。这些 ,叫做系统的状态参量。

  2、平衡态与非平衡态 (可以举例说明什么是平衡态与非平衡态)

  【补充说明】

  ①在外界影响下,系统也可以处于一种宏观性质不随时间变化的状态,但这不是平衡态。比如:一根长铁丝,一端插入1000C的沸水中,另一端放在00C恒温源中,经过足够长时间,温度随铁丝有一定的分布,而且不随时间变化,这种状态不是平衡态,只是一种稳定状态,因为存在外界的影响,当撤去外界影响,系统各部分的状态参量就会变化。

  ②热力学系统的平衡态是一种动态平衡,组成系统的分子仍在做无规则运动,只是分子运动的平均效果不随时间变化,表现为系统的宏观性质不随时间变化。而力学中的平衡是指物体的运动状态处于静止或匀速直线运动

  ③平衡态是一种理想情况,因为任何系统完全不受外界影响是不可能的。系统处于平衡态时,由于涨落,仍可能发生偏离平衡状态的微小变化。

  3、两个系统达到了热平衡是指

  【说明】热平衡概念不仅适用于相互作用的系统,也适用于两个原来没有发生过作用的系统。因此可以说,只要两个系统在接触时他们的状态不发生变化,我们就说这两个系统原来是

  4、热平衡定律又叫 ,其内容表述为:

  5、温度的概念:

  6、决定一个系统与另一个系统是否达到热平衡状态的物理量是 ;一切达到热平衡的物体都具有相同的 。实验室常用温度计的原理是:

  例如:在一个绝热的系统中,有一块烧烫的铁块,还有一些较冷的沙土。使两者接触,铁块会慢慢变冷,沙土会慢慢变热,后来她们变得一样“热”了,就不再变了。这种“冷热程度相同”就是他们的“共同性质”。这个“共同性质”的物理量即为 。

  7、温度计与温标:用来测温的仪器, 第一个制造了温度计后,温度就不再是一个主观感觉,而形成了一个客观的物理量。到目前,形形色色的温度计已经应用在各种场合。如果要想定量地描述温度,就必须有一套方法,这套方法就是 。也就是说,为了表示出温度的数值,对温度零点、分度方法所做的规定,就是温标。

  【补充说明】生活中常见的温标有摄氏温标、华氏温标等。不同的温标都包含三个要素:第一,选择某种具有测温属性的测温物质;第二,了解测温物质随温度变化的函数关系;第三,确定温度零点和分度方法。

  8、热力学温标表示的温度叫做 ,它是国际单位制中七个基本物理量之一,用符号

  表示,单位是 ,符号是 。摄氏温度与热力学温度的关系是

  【典例1】关于热力学温标的正确说法是( )

  A、热力学温标是一种更为科学的温标.

  B、热力学温标的零度为—273.150C。叫绝对零度.

  C、气体温度趋近于绝对零度时期体积为零

  D、在绝对零度附近气体已经液化.

  【导练1】以下说法正确的是( )

  A、绝对零度永远达不到. B、现代技术可以达到绝对零度

  C、物体的绝对零度是—273K D、物体的`绝对零度是—273.150C.

  【典例2】关于热力学温度下列说法正确的是( )

  A、-330C=240.15K.B、温度变化10C,也就是温度变化1K.

  C、摄氏温度与热力学温度都可能取负值D、温度由t0C升至2t0C,对应的热力学温度升高了273.15K+t

  【导练2】关于热力学温标和摄氏温标,下列说法正确的是( )

  A、热力学温标中每1K与摄氏温标中每10C大小相等.

  B、热力学温标中升高1K大于摄氏温度升高10C

  C、热力学温标中升高1K等于摄氏温度升高10C.

  D、某物体摄氏温度100C,即热力学温度10K

  【典例3】“在测定某金属块的比热容时,先把质量已知的金属块放在沸水中加热,经过一段时间后把它迅速放进质量、温度均已知的水中,并用温度计测量水的温度,根据实验数据就可以计算出金属块的比热容”。以上叙述中,哪个地方涉及了“平衡态”和“热平衡”的概念

  【点拨】金属块在沸水中加热一段时间后,二者就达到了“热平衡”,此时的沸水和金属块就处于“平衡态”;将金属块放入质量、温度已知的水之前,金属块和水处于各自的“平衡态”,当放入金属块后水温不再上升时,金属块和水均处于“热平衡”,此时温度计的读数就是水和金属块的共同温度。

高二物理教案15

  1、理解振幅、周期和频率的概念,知道全振动的含义。

  2、了解初相位和相位差的概念,理解相位的物理意义。

  3、了解简谐运动位移方程中各量的物理意义,能依据振动方程描绘振动图象。

  4、理解简谐运动图象的物理意义,会根据振动图象判断振幅、周期和频率等。

  重点难点:对简谐运动的振幅、周期、频率、全振动等概念的理解,相位的物理意义。

  教学建议:本节课以弹簧振子为例,在观察其振动过程中位移变化的周期性、振动快慢的特点时,引入描绘简谐运动的物理量(振幅、周期和频率),再通过单摆实验引出相位的概念,最后对比前一节得出的图象和数学表达式,进一步体会这些物理量的含义。本节要特别注意相位的概念。

  导入新课:你有喜欢的歌手吗?我们常常在听歌时会评价,歌手韩红的音域宽广,音色嘹亮圆润;歌手王心凌的声音甜美;歌手李宇春的音色沙哑,独具个性……但同样的歌曲由大多数普通人唱出来,却常常显得干巴且单调,为什么呢?这些是由音色决定的,而音色又与频率等有关。

  1、描述简谐运动的物理量

  (1)振幅

  振幅是振动物体离开平衡位置的①最大距离。振幅的②两倍表示的是振动的物体运动范围的大小。

  (2)全振动

  振子以相同的速度相继通过同一位置所经历的过程称为③全振动,这一过程是一个完整的振动过程,振动质点在这一振动过程中通过的路程等于④4倍的振幅。

  (3)周期和频率

  做简谐运动的物体,完成⑤全振动的时间,叫作振动的周期;单位时间内完成⑥全振动的次数叫作振动的频率。在国际单位制中,周期的单位是⑦秒,频率的单位是⑧赫兹。用T表示周期,用f表示频率,则周期和频率的关系是⑨f=。

  (4)相位

  在物理学中,我们用不同的⑩相位来描述周期性运动在各个时刻所处的 不同状态。

  2、简谐运动的表达式

  (1)根据数学知识,xOy坐标系中正弦函数图象的表达式为 y=Asin(ωx+φ)。

  (2)简谐运动中的位移(x)与时间(t)关系的表达式为 x=Asin(ωt +φ),其中 A代表简谐运动的振幅, ω叫作简谐运动的“圆频率”, ωt+φ代表相位。

  1、弹簧振子的运动范围与振幅是什么关系?

  解答:弹簧振子的运动范围是振幅的两倍。

  2、周期与频率是简谐运动特有的概念吗?

  解答:不是。描述任何周期性过程,都可以用这两个概念。

  3、如果两个振动存在相位差,它们振动步调是否相同?

  解答:不同。

  主题1:振幅

  问题:(1)同一面鼓,用较大的力敲鼓面和用较小的力敲鼓面,鼓面的振动有什么不同?听上去感觉有什么不同?

  (2)根据(1)中问题思考振幅的物理意义是什么?

  解答:(1)用较大的力敲,鼓面的振动幅度较大,听上去声音大;反之,用较小的力敲,鼓面的振动幅度较小,听上去声音小。

  (2)振幅是描述振动强弱的物理量,振幅的大小对应着物体振动的强弱。

  知识链接:简谐运动的振幅是物体离开平衡位置的最大距离,是标量,表示振动的强弱和能量,它不同于简谐运动的位移。

  主题2:全振动、周期和频率

  问题:(1)观察课本“弹簧振子的简谐运动”示意图,振子从P0开始向左运动,怎样才算完成了全振动?列出振子依次通过图中所标的点。

  (2)阅读课本,思考并回答下列问题:周期和频率与计时起点(或位移起点)有关吗?频率越大,物体振动越快还是越慢?振子在一个周期内通过的路程和位移分别是多少?

  (3)完成课本“做一做”,猜想弹簧振子的振动周期可能由哪些因素决定?假如我们能看清楚振子的整个运动过程,那么从什么位置开始计时才能更准确地测量振动的周期?为什么?

  解答:(1)振子从P0出发后依次通过O、M'、O、P0、M、P0的过程,就是全振动。

  (2)周期和频率与计时起点(或位移起点)无关;频率越大,周期越小,表示物体振动得越快。振子在一个周期内通过的路程是4倍的振幅,而在一个周期内的位移是零。

  (3)影响弹簧振子周期的因素可能有振子的质量、弹簧的劲度系数等;从振子经过平衡位置时开始计时能更准确地测量振动周期,因为振子经过平衡位置时速度最大,这样计时的误差最小。

  知识链接:完成全振动,振动物体的位移和速度都回到原值(包括大小和方向),振动物体的路程是振幅的4倍。

  主题3:简谐运动的表达式

  问题:阅读课本有关“简谐运动的表达式”的内容,讨论下列问题。

  (1)一个物体运动时其相位变化多少就意味着完成了全振动?

  (2)若采用国际单位,简谐运动中的位移(x)与时间(t)关系的表达式x=Asin(ωt+φ)中ωt+φ的单位是什么?

  (3)甲和乙两个简谐运动的频率相同,相位差为 ,这意味着什么?

  解答:(1)相位每增加2π就意味着完成了全振动。

  (2)ωt+φ的单位是弧度。

  (3)甲和乙两个简谐运动的相位差为 ,意味着乙(甲)总是比甲(乙)滞后个周期或次全振动。

  知识链接:频率相同的两个简谐运动,相位差为0称为“同相”,振动步调相同;相位差为π称为“反相”,振动步调相反。

  1、(考查对全振动的理解)如图所示,弹簧振子以O为平衡位置在B、C间做简谐运动,则( )。

  A、从B→O→C为全振动

  B、从O→B→O→C为全振动

  C、从C→O→B→O→C为全振动

  D、从D→C→O→B→O为全振动

  【解析】选项A对应过程的路程为2倍的振幅,选项B对应过程的路程为3倍的振幅,选项C对应过程的路程为4倍的振幅,选项D对应过程的路程大于3倍的振幅,又小于4倍的振幅,因此选项A、B、D均错误,选项C正确。

  【答案】C

  【点评】要理解全振动的概念,只有振动物体的位移与速度第同时恢复到原值,才是完成全振动。

  2、(考查简谐运动的振幅和周期)周期为T=2 s的简谐运动,在半分钟内通过的路程是60 cm,则在此时间内振子经过平衡位置的次数和振子的振幅分别为( )。

  A、15次,2 cm B、30次,1 cm

  C、15次,1 cm D、60次,2 cm

  【解析】振子完成全振动经过轨迹上每个位置两次(除最大位移处外),而每次全振动振子通过的路程为4个振幅。

  【答案】B

  【点评】一个周期经过平衡位置两次,路程是振幅的4倍。

  3、图示为质点的振动图象,下列判断中正确的是( )。

  A、质点振动周期是8 s

  B、振幅是4 cm

  C、4 s末质点的'速度为负,加速度为零

  D、10 s末质点的加速度为正,速度为零

  【解析】由振动图象可得,质点的振动周期为8 s,A对;振幅为2 cm,B错;4 s末质点经平衡位置向负方向运动,速度为负向最大,加速度为零,C对;10 s末质点在正的最大位移处,加速度为负值,速度为零,D错。

  【答案】AC

  【点评】由振动图象可以直接读出周期与振幅,可以判断各个时刻的速度方向与加速度方向。

  4、(考查简谐运动的表达式)两个简谐运动分别为x1=4asin(4πbt+π)和x2=2asin(4πbt+π),求它们的振幅之比、各自的频率,以及它们的相位差。

  【解析】根据x=Asin(ωt+φ)得:A1=4a,A2=2a,故振幅之比 = =2

  由ω=4πb及ω=2πf得:二者的频率都为f=2b

  它们的相位差:(4πbt+π)—(4πbt+π)=π,两物体的振动情况始终反相。

  【答案】2∶1 2b 2b π

  【点评】要能根据简谐运动的表达式得出振幅、频率、相位。

  拓展一:简谐运动的表达式

  1、某做简谐运动的物体,其位移与时间的变化关系式为x=10sin 5πt cm,则:

  (1)物体的振幅为多少?

  (2)物体振动的频率为多少?

  (3)在时间t=0、1 s时,物体的位移是多少?

  (4)画出该物体简谐运动的图象。

  【分析】简谐运动位移与时间的变化关系式就是简谐运动的表达式,将它与教材上的简谐运动表达式进行对比即可得出相应的物理量。

  【解析】简谐运动的表达式x=Asin(ωt+φ),比较题中所给表达式x=10sin 5πt cm可知:

  (1)振幅A=10 cm。

  (2)物体振动的频率f= = Hz=2、5 Hz。

  (3)t=0、1 s时位移x=10sin(5π×0、1) cm=10 cm。

  (4)该物体简谐运动的周期T==0、4 s,简谐运动图象如图所示。

  【答案】(1)10 cm (2)2、5 Hz (3)10 cm (4)如图所示

  【点拨】在解答简谐运动表达式的题目时要注意和标准表达式进行比较,知道A、ω、φ各物理量所代表的意义,还要能和振动图象结合起来。

  拓展二:简谐振动的周期性和对称性

  甲

  2、如图甲所示,弹簧振子以O点为平衡位置做简谐运动,从O点开始计时,振子第到达M点用了0、3 s的时间,又经过0、2 s第二次通过M点,则振子第三次通过M点还要经过的时间可能是( )。

  A、 s B、 s C、1、4 s D、1、6 s

  【分析】题目中只说从O点开始计时,并没说明从O点向哪个方向运动,它可能直接向M点运动,也可能向远离M点的方向运动,所以本题可能的选项有两个。

  乙

  【解析】如图乙所示,根据题意可知振子的运动有两种可能性,设t1=0、3 s,t2=0、2 s

  第一种可能性:=t1+=(0、3+ ) s=0、4 s,即T=1、6 s

  所以振子第三次通过M点还要经过的时间t3=+2t1=(0、8+2×0、3) s=1、4 s

  第二种可能性:t1—+=,即T= s

  所以振子第三次通过M点还要经过的时间t3=t1+(t1—)=(2×0、3— ) s= s。

  【答案】AC

  【点拨】解答这类题目的关键是理解简谐运动的对称性和周期性。明确振子往复通过同一点时,速度大小相等、方向相反;通过关于平衡位置对称的两点时,速度大小相等、方向相同或相反;往复通过同一段距离或通过关于平衡位置对称的两段距离时所用时间相等。另外要注意,因为振子振动的周期性和对称性会造成问题的多解,所以求解时别漏掉了其他可能出现的情况。

【高二物理教案】上海花千坊相关的文章:

高二物理教案11-03

高二物理教案12-09

高二物理教案(15篇)12-27

高二物理教案(集锦15篇)02-27

物理教案表征交变电流的物理量-高二物理教案12-16

高二年级物理教案01-03

欧姆定律高二物理教案2篇04-01

物理教案高二年级下册02-07

物理教案12-17