【热门】小学数学五年级教案
作为一名教职工,往往需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。如何把教案做到重点突出呢?下面是小编整理的小学数学五年级教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学数学五年级教案1
教学内容: 教科书第27页例1、例2及相关练习。
教学目标:理解并掌握分数和小数互化的方法,能应用这个方法把分数化成小数,或把小数化成分数
过程与方法:培养学生的分析能力和综合应用知识的能力
情感、态度与价值观: 通过学生的主动探索,增强学生的成功体验。
教学重点:理解并掌握分数和小数互化的方法,能应用这个方法把分数化成小数,或把小数化成分数
教学难点:理解并掌握分数和小数互化的方法,能应用这个方法把分数化成小数,或把小数化成分数
教学准备: 多媒体课件、视频展示台
教学课时:1 总课时
教学思路:通过对前面知识的复习,唤起学生对相关知识的积极回忆,为新课的学习打下基础。
一、复习准备 1倍嗝教蹇渭出示:用小数和分数表示下面每个图中的阴影部分。
2(1)0.3里面有3个()分之一,它表示()分之()。
(2)0.12里面有12个()分之一,它表示()分之()。
(3)0.016里面有16个()分之一,它表示()分之()。
3卑严旅娓鞲龇质写成除法算式。
2/3 5/6 8/4
师:前面我们分别学习了分数和小数的一些知识,这节课我们就来一起研究分数和小数的互化。
(板书课题)
二、进行新课 1苯萄Ю1
多媒体课件出示例1:把3/4,11/25,23/8化成小数。
师:怎样把这些分数化成小数呢?对照前面复习的内容,你觉得可以用前面学习的哪些知识来把分数化成小数呢?
引导学生分析出可以把分数写成除法算式来计算。
师:我们可以试着从分数与除法的关系想一想,应该怎样计算呢?
学生讨论后回答:可以把分数改写成除法,再求出它的小数商。
师:用这个方法,自己选一个分数试一试。
学生完成作业后,抽学生的作业在视频展示台上展示:
3/4=3÷4=0.75 11/25=11÷25=0.44 2/38=23÷8=2.875
师:能说一说怎样把分数化成小数吗?
随学生的回答板书:先把分数改写成除法算式,再求商。
师:用这个方法试一试,在把这些分数化成小数的过程中你会遇到哪些新的问题?
要求学生完成第28页课堂活动第2题,完成后抽学生回答。
师:把这些分数化成小数时你遇到了什么新的问题?
生:把这些分数改写成除法算式后,有些算式除不尽。
师:这些能除尽的分数就能化成有限小数,不能除尽的就不能化成有限小数。你能具体说一说哪些分数能除尽,哪些分数会出现除不尽这种现象吗?
随学生的回答板书:
能除尽(能化成有限小数)的:1/4,3/5,7/10。
不能除尽(不能化成有限小数)的:1/12,6/7,11/15。
师:把上面每个分数的分母分解质因数,你会发现能化成有限小数的分数有什么特征吗?
学生把分数的分母分解质因数以后,抽学生的作业在视频展示台上展示出来。
能化成有限小数的分数的分母:4=2×2 5 10=2×5
不能化成有限小数的分数的分母:12=2×2×3 7 15=3×5
师:根据上面的分析你能作出哪些猜测?
引导学生说出:我猜想分母只含质因数2和5的分数,就能化成有限小数,如果除了质因数2和5,还含有其他质因数,就不能化成有限小数。
师:这个猜想对不对?请同学们自己写几个分母只含质因数2和5的分数来试一试。
学生试后,肯定这个猜测是对的。
2苯萄Ю2
多媒体课件出示例2:把0.4,0.8,0.85,1.125化成分数。
师:怎样把这些小数化成分数呢?我们可以联系小数的意义来想:0.4是几分之几?0.85又是几分之几呢?
师:你能联系小数的意义在下面的直线上填上合适的分数吗?
学生填后,问学生是怎样填的,引导学生说出0.4就是十分之四,0.8就是十分之几,0.85就是百分之八十五,1.125就是千分之一千一百二十五。
师:现在大家知道怎样把小数化成分数了吗?
生:0.4是十分之四,把它写成分数就是4/10,化简后是2/5。
(根据学生的回答板书:0.4=4/10=2/5。)
师:这样想对不对?
生:对。
师:请同学们像他那样思考,把0.85,1.125化成分数。
学生思考解答后,抽学生的`作业在视频展示台上展示:
0.85=85/100=17/20 1.125=1125/1000=9/8
师:你是怎样想的呢?
生:我是这样想的,0.85表示百分之八十五,写成分数是85/100,把这个分数化简后是17/20。
师:(抽第二个学生回答)你又是怎样想的呢?
学生回答略。
师:你们赞成他们的想法吗?
生:赞成。
师:我也赞成他们的想法,谁来归纳一下把小数化成分数的方法?
指导学生说出:把小数化成分数时,先想这个小数表示的是十分之几、百分之几、千分之几……再把这个小数直接写成分母是10,100,1000……的分数,能够化简的要化简。
师:下面我们做一个对口令游戏:由一个同学说出一个小数,另一个同学迅速地把这个小数化成分数,看谁做得又快又对。
联系复习题来思考问题的解决方法,突出原有知识对新知识学习的推动作用,用“分解质因数”作一个引导,让学生自己去发现分数化小数时哪些分数能化成有限小数,哪些不能化成有限小数,深化学生对分数化小数的理解,提高学生对分数化小数方法的掌握水平
三、课堂小结 略
练习设计 练习七第1,2,3题。
板书设计 小数化分数,原来有几位小数,就在1后面写几个0作分母, 把原来的小数去掉小数点作分子;化成分数后,能约分的要约分
小学数学五年级教案2
教学目标:
知识与技能:会解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。
过程与方法:引导学生用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。
情感与态度:在学习中使学生明白时间的宝贵,养成珍惜时间的好品质。
教学重点:
用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。(加法计算)
教学难点:
学生对于题意的理解。
教学过程:
一、导入阶段
出示
小丁丁和同学约好上午9时15分在动物园门口集合,小丁丁早晨7时48分出门,路上用了1小时23分。
(1)在这段文字叙述中你获得了哪些信息
上午9时15分在动物园门口集合;
早晨7时48分出门;
路上用了1小时23分。
(2)9时15分、7时48分、1小时23分各表示什么,有什么不同?
9时15分、7时48分表示时刻,是指某一事件发生的时候。
1小时23分表示时间,是指某一事件经过了多久。
(3)出示问题“小丁丁几时几分到达动物园门口”这是求时间还是求时刻?
是求时刻
(4)今天我们就要来讨论关于时间的.计算的问题。(出示课题)
[对于学生经常会混淆的“时间”“时刻”这2个数学用语进行简单的辨析。使学生在解决问题时能明确地知道是要求什么?]
二、中心阶段
1、请学生试着计算。
2、汇报
(1)画图
(2)竖式算
注意:这步计算,“分”的计算满60要向“时”进1,因为分与时之间的进率是60。
答:小丁丁9时11分到达动物园门口。
3、比较2种方法得出2种方法都很好,都很直观、很简洁。
4、小结
我们可以利用时间线段图和竖式来解决某一时刻经过多少时间会到哪一个时刻的计算问题。
三、练习阶段
7时50分+45分=()时()分
8时26分+2小时37分=()时()分
15分18秒+3分52秒=()分()秒
小学数学五年级教案3
设计思想:本课教学设计依据利用音像教材培养学生数学素质的课题研究目标,以现代教育思想、理论为指导,以认知主义学习理论为基础,以培养智能型、创造型人才为目的,试图通过对教学的科学设计,实现音像教材在教学过程中的有机渗透,充分挖掘音像教材在帮助学生正确理解相遇问题的数量关系,探究解答方法,培养学生知识与能力素质、身体心理素质等方面发挥的作用,全课采用启发式电化教学,本教学设计力求体现以下特点:
1。充分体现学生的主体地位,重视挖掘学生的认知潜力。运用现代教育媒体首先设计一道准备题,通过微机演示让学生感知相通问题的结构特点,然后通过列表、讨论、分析,让学生理解相遇问题的数量关系,充分发挥电教媒体的功能优势,为学生提供多种信息与表象,在教师适时启发点拔下,通过自己动脑、动手、动口,积极思维,探索和发现相遇问题的解答方法,在巩固练习过程中运用所学知识解决与相遇问题类似的实际问题,实现知识、技能和方法的迁移,充分体现了知识与能力素质的培养过程。
2。充分发挥教师的主导作用,在教师的指导下,通过相遇问题的学习及解决问题思维训练,培养学生勤学善思、主动进取的良好学习习惯和学习兴趣,利用现代教育媒体创设情境,使学生在乐中学习,在提高学习效率的同时,培养了学生的身体心理素质。
教学目的:
1。理解相遇问题中速度、时间、路程这三个数量间的相依关系,以及相向而行、相遇等术语的含义。
2。能根据相遇问题的题意用线段图分析数量关系,并说出解题步骤。
3。能正确解答相遇问题中求路程的应用题。
4。在培养学生逻辑思维能力的同时注重培养学生的自我探究和创造精神。
教学重点:相遇问题中数量关系的理解和解题思路的分析。
电教媒体:微机及配套大屏幕、投影仪、投影片。
教学过程:
一、展示设疑
(一)前提诊测(投影片)
1。张华每分钟走65米,走了4分钟,一共走了多少米? (654=260米)
提问:为什么这样列式?谁会用一个数量关系式表示? (板书:速度时间=路程)
2。李诚每分钟走70米,走了4分钟, ? (由学生补充问题再列式计算)
[评析:旧知的再现,针对性强,抓住与新知密切相关的速度、时间、路程的数量关系,为学习新知识作了适
当的铺垫。]
(二)引人课题
我们以前学习的都是一个人或一个物体运动的情况,如果是两个人或两个物体同时相对运动将会出现什么情况呢?这就是我们今天要学习的应用题。(板书课题:应用题)
二、引导思疑
1。创设动态情境,准确理解题意。。
微机屏幕显示准备题:张华家距李诚家390米,两人同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米。
师:请同学们看屏幕,张华、李诚是怎样走的?结果会怎样?
(微机演示)屏幕显示张华、李诚两家用太阳表示并不断闪烁,当发出一声悦耳的响声后,张华、李诚分别从两家同时出发,相对而行,经过3分钟后两人相遇,这时又发出一声悦耳的响声,张华走的路程用蓝色表示,李诚走过程的路程用红色表示,屏幕底色是浅黄色,色彩清晰艳丽。
学生观察后提问:有几个人在运动?出发时间怎样?从哪里出发?出发后方向怎样?结果怎样?
板书:人:两个 时间:同时 地点:两地
方向:相向(相对) 结果:相遇
[评析:运用微机所具有的声、光、色、形的特点,创设动态情境,抓住相遇问题的关键,加深学生对
两地、同时、相遇关键词的分析和领会,形象深刻地提示了事物的发展、变化与结果,使学生准确理相遇应用题的结构特点,充分发挥现代教育技术手段的功能优势,为后面的例题教学扫除了障碍。]
2. 观察、思考、分析、填表。
教师利用微机逐分逐分地演示两人走的时间与路程变化情况,让学生一边观察一边思考,完成下准备题中的表格。。
根据以上微机的演示让学生填写下面他们两人走的时间和路程的变化情况表。
走的时间 张华走的路程 李诚走的路程 两人所走的路程的和 现在两人的距离
填完上表后让学生讨论:
①出发3分钟后,两人之间的距离变成了多少?
②两人所走的路程的和与两家的距离有什么关系?
[评析:素质教育重视学生的主体地位,重视挖掘学生的认知潜力,准备题的设计正是考虑了这一要求。通过微机演示让学生感知相遇问题的结构特点,然后通过列表、讨论、分析每经过1分、2分、3分两人之间的距离变化,从而准确理解到:相遇时两人所走的路程的和就是两家的距离这一重要的数量关系。这里充分运用电教媒体的优势,适时启发、点拔,给予学生方法上的指导,引导学生思维活动上路,从而为下面的例题提供丰富的.信息与表象。]
三、引思解疑
l。出示例5:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分,两人在校门口相遇。他们两家相距多少米?
2.理解题意,画出线段图。
①让学生说说小强和小丽是怎样运动的?题中的已知条件和问题分别是什么?
②根据学生的回答,微机屏幕显示线段图(标出运动方向、有关数据及问题)。
③让学生根据线段图复述题意,同时想象两人同时从家里走向学校的过程。
(3)分析数量关系及解题方法。
问:怎样求两家的距离?
启发学生说出两种解法:
① 求两人各自的路程,再加起来。
644+704
②求每分两人所走的路程和,再求4分两人所走路程的和。
(65+70)4
4。比较两种算法。
让学生说说两种解法分别先求什么,再求什么?再引导学生观察两种解法的算式之间有什么联系?(为什么两种解法算式不同却结果相等?)(符合乘法分配律)
[评析:前面准备题已通过微机向学生提供了直观、多彩、形象、生动的表象,又通过填表、分析,学生已准确理解了相遇问题的数量关系,例5的解答已经是水到渠成。然而教师并不急于呈现答案,而是注重知识的获取过程。先启迪学生复述题意、想象两人同时相向而行的情景,再画出线段图,进一步激发学生解题的积极性与主动性,最后通过学生自身努力找到答案,化解难点,真正体现了启发式电化教学解决难点的媒体策略思想。整个例题的解答都是学生在教师的引导下充分运用前面提供的表象自我探究、自我发现,这样,有效地促进了学生把外部感知活动内化为内部的思维活动,从而形成合理的知识结构,使学生的认知水平发展到意义建构的较高层次。]
5。做一做(投影)①甲乙两人同时从两地面对面走来,经过6分钟两人相遇(如图),求两地间的路程。
每分60米 每分75米
a。相遇时甲行了多少米?()()=()米
b。756表示( )
c。两地间的路程:()()+()()=()米
另一种解法:
a。两人每分所走的路程的和是:()+()=()米
b。两地间的路程是[()+()]()=()米
②两车同时从两地相对开出,4小时相遇,一辆汽车每小时行48千米,另一辆汽车每小时行52千米,求两地之间相距多少千米?(两种方法解答)
四、拓思创新
1。甲乙两个工程队同时修筑一条公路,14天修完,甲队每天修280米,乙队每天修300米,这条路全长多少米?
2。甲乙两车同时从两地相对出发,甲车每小时行45千米,乙车每小时行50千米,6小时后两车还相距30千米,求两地之间相距多少千米?
[评析:练习的设计由浅入深,有坡度多层次,先表述相遇问题的解题思路,强化学生口头表达能力,促使知识内化,然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移,最后解决已知条件有变化的相遇问题,突破固定的思维框架,形成自己的认知结构。]
小学数学五年级教案4
教学目标
1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。
2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。
学情分析
解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。
重点难点
教学重点:
发现解决这类问题的最佳策略。
教学难点:
理解并认可最佳策略的有效性。
教学过程
活动1【导入】创设情境、激发兴趣
1、看视频,谈感受。
播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?
2、发现次品。
生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。
今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)
活动2【讲授】初步感知、寻找方法
1、出示例题。
有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?
数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。
2、天平的原理。
如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。
3、华罗庚的'数学思想。
让学生自由猜测称的次数。
师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!
活动3【活动】自主探究、方法多样
1.研究2瓶
师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)
2.讨论3瓶的问题
如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)
注重天平一共有3个空间可以利用,这样节省次数。 生将探究结果填入导学案中。
3.研究4-8瓶的问题
如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?
学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。
课件出示小组活动要求。(1)把待测物品分成了几份?每份几个?(2)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?
4.重点汇报8瓶的设计方案。
(1)师引导学生:比较3、4种分法,并展开讨论:想想为什么方法3的次数是最少的?你觉得它会和什么有关系呢?
(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。
(3)师:比较1、2、3种分法,讨论为什么同样分3份,为什么第3种方法只用了2次哪?
(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。
5.研究9瓶
学生根据总结的方法直接说出次数,小组验证。
活动4【练习】拓展提高,优化方案
1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?
2.举一反三: 从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。
3.发散思维:有2187瓶矿泉水,其中2186瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
小学数学五年级教案5
教学目标
1.结合具体情境,在操作活动中,探索并理解分数乘整数的意义。
2.探索并掌握分数乘整数的计算方法,能正确计算。
3.能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。
教学重点
会用分数乘整数的计算法则真确进行计算。
教学难点
分析和解决分数乘整数的实际问题。
教师指导与教学过程
学生学习活动过程
设计意图
一,复习整数乘法的意义
1.什么叫整数乘法?就是求几个相同加数的和的简便运算。
2.出示题目,学生进行计算
(1)6+6+6=6×3
二、新授:
1、出示题卡
1个图案占一张彩纸的1/5,3个图案占这张彩纸的几分之几?
2、引导学生用涂一涂加法计算,乘法计算三种分式来解决问题。
学生回忆整数乘法,并回答什么叫整数乘法。
1、学生仔细阅读题卡,理解题意否,列式计算。
2、学生交流各自计算的方法。
3、全班进行交流。
++==
3×=++==
通过复习整数乘法的.意义,过渡到分数乘法的意义,学习易于理解。
在交流各自的语言地理学的过程中,让学生体会分数乘整数的意义与整数乘法的意义是相同的,即求几个相同加数的和的简便运算。
教师指导与教学过程
学生学习活动过程
设计意图
三、涂一涂,算一算
(1)2个3/7的和是多少?
(2)3个5/16的和是多少?
四、练习巩固
1、5个3/8是多少?
2、4个2/17是多少?
3、6个3/25是多少?
学生打开教科书,选涂一涂,再列式计算。
学生审题后,涂一涂,再列式计算。
×2=
全班交流
5/16×3=5×3/16
=15/16
学生独立完成在作业本上
帮助学生进一步体会分数乘整数的定义,同时还可以帮助学生寸步体会“分数乘整数,分子和整数相乘,分母不变”的道理。
小学数学五年级教案6
教学目的:
1、使学生初步体会小数除法的意义,在熟悉的日常生活情境中探索并理解除数是整数的小数除法的计算方法,能正确地进行小数除以整数的计算,并能解决简单的实际问题。
2、让学生在观察、探究、实践应用等活动中,体会小数除法与生活的联系,感受小数除法与整数除法之间的联系,培养积极的学习态度,树立学好数学的信心。
教学重点:理解除数是整数的小数除法的算理,掌握计算方法。
教学难点:理解商的小数点和被除数的小数点对齐的道理。
教具准备:课件
教学过程:
一、复习
1、同学们,在四年级上学期我们已经学习了整数除法,出示320÷3,你会列竖式吗?学生独立完成,一生板演,完成后说出计算过程。
2、还记得整数除法是怎样计算的吗?
从高位除起,除数是几位就看被除数的前几位,除到哪位商写在那位上,不够商1就商0。
3、今天我们就在这个基础上,一起来研究小数领域的除法计算。
(设计意图:小数除以整数是在学生学会整数除以整数的基础上学习的一个新内容,算理与计算方法都是在这一基础上进行教学的,课前,对这一知识的复习时非常必要的)
二、探究新知,探索算法
1、冬天来了,天气比较干燥,我们都要多吃水果,瞧,妈妈买了好多水果呢!(出示例题)从表格中,你了解到哪些信息?要求单价,可以根据那个关系式(总价÷数量=单价)你会列式吗?(师板书三个算式)
(设计意图:在课的开始就创设了妈妈在超市购买水果的情景,并且出示购买水果的情况表,让学生的除法计算学习置身于一个活生生的生活情景中,激发学生求知的。这里的情景与计算教学并非简单的拼凑,而是对学生探索计算方法时起到启发思维的作用,这一激活的生活经验有利于孩子体会小数除以整数的意义和为下面竖式算理的探索活动买下了伏笔,奠定了基础。)
2、我们先来求苹果的单价。
比较刚才9.6÷3与320÷3有什么不同的地方?(板书课题:小数除以整数)
①每千克苹果是多少元?谁知道?
②谁来说说你是怎么想的?
a、把9.6元分成9元和6角
9÷3=3(元) 6÷3=2(角) 3元+2角=3元2角 3元2角=3.2元
b、9.6元是96角 96÷3=32(角) 32角是3.2元
c、9个1除以3等于3个一也就是3,6个0.1除以3等于2个0.1,也就是0.2,3加0.2是3.2
d、9.6表示96个0.1,吧96个0.1平均分成3分每份是32个0.1也就是3.2
e、列竖式。(利用小数的组成和小数本身的计数单位(9.6可以分成9个一和6个十分之一,9个一除以3得3个一,6个十分之一除以3得2个十分之一,3个一和2个十分之一合起来是3.2))
③刚才有些同学们利用元、角、分间的进率还有小数的组成算出了苹果的单价,除了这样我还发现有同学是用竖式计算的。请那位同学汇报一下计算的过程。
a你是先算什么,再算什么的呢?(先算9个一除以3等于3个一,3商在个位上;再算6个十分之一除以3等于2个十分之一,2商在十分位上)
b那小数点呢?你为什么将小数点点在这里?(指名回答)
(指着商的小数点和被除数的小数点)问:同学们认真观察小数点点在这里也就是商的小数点和被除数的小数点怎样了?(对齐)谁愿意再来说一遍商的小数点为什么要点“3”和“2”的中间也就是为什么要与被除数的小数点对齐?
这位同学非常了不起,自己用竖式计算出了9.6÷3=3.2,现在你也会用竖式计算了吗,请同学们说一说用竖式是怎样计算的。请一生完整地把过程说一遍,课件演示。强调小数点对齐。
④让我们大家一起来回顾一下整个的计算过程。(边板书竖式,边回顾)9.6÷3先算? 3商在?计算时为了避免漏掉小数点,通常我们在算出商的个位上的数之后,就在商里点上小数点。接下去再算?2商在?)
(设计意图:周玉仁教授曾说:“学生能探索得知的教师不要替代,能独立思考的,教师不要暗示,要多给学生一点思考的时间,多一点活动的`空间。因此我就这一环节我提供了充分的时间与空间给学生在小组里说出自己是怎样想的,通过学生积极的思考,主动探索,说出的理由百花齐放。足够的探索空间使学生真正的研究知识本身的特点,学生的这些想法正正是为竖式计算的探索活动“蓄势待发”,在学生充分地说明理由后再说竖式的写法,学生对竖式每一步的理由,每部分的意义就清晰明了多了,不但知其然,而且知其所以然,整个活动学生把精力集中到探索算理本身中去,真正地提高探索发现的价值与有效性,也为后面学习12÷5和5.7÷6的计算奠定了丰厚的算理基础。)
3、下面我们来研究香蕉的单价。
①估算香蕉的单价应该在什么范围之间?
②估算对吗?让我们用竖式算一算(巡视后,指名板书竖式)。
③我们一起来看这位同学算的。
12个一除以5得2个一,还余2个一。在整数除法中,算到这儿就行了。但今天我们研究的是小数除法啊,算完没有?该怎样继续除下去呢?(停顿,生答:添0再除)
④0添在哪里?(2后面)
添0后的20表示20个?(20个十分之一)
这个0在什么位?(十分位)这样添0的根据什么?(小数的基本性质)
⑤能继续往下算了吗?(生口述,师板书)
⑥2.4元的确是在估算范围之内。
⑦小结:这题与以前学的整数除法有什么不同?(出示:有余数,添0继续除)
4、最后让我们来看看橘子的单价。
你认为橘子的单价会在什么范围之内?(学生估算)
是吗?让我们用竖式来算算。(指名板书)
②反馈:5.7÷6,除数6是一位数,看被除数的前一位,5除以6个位不够商1,怎么办?(在商的整数部分写0,点上小数点,再继续往下除。)
③小结:,通过这题我们又发现在小数除法中,个位上不够商1,该怎么办?(出示:个位不够商1,商0)
5、检验:
刚才我们分别求出了苹果、香蕉、橘子的单价,做的对吗,可以怎样检验?
指名说,你是根据什么数量关系来检验的?(单价×数量=总价)
下面我们分工合作,第一组检验苹果,第二、三组检验香蕉,第三组检验橘子。它们的单价对吗?那我们就可以将答案填入表格中,同学们一定要养成及时检验的好习惯,这样可以大大地提高计算的正确率。
6、比较:
大家看黑板,让我们再来观察这3道竖式,你发现它们有什么相同点和不同点?
(同:①都是除数是整数的小数除法。②商的小数点要和被除数的小数点对齐。)
(异:①直接计算;②有余数,在后面添0继续往下除;③个位不够商1,在商的整数部分写0,点上小数点,再继续往下除。)
(设计意图:通过3道例题的教学,学生在计算除数是整数的小数除法时常遇到的情况基本在这里讲到了,,这里的教学能从一般到特殊逐步使学生掌握计算过程中的具体技巧,突破难点,最后通过引导学生对3题式子的比较,初步领会除数是整数的小数除法的计算方法)
三、再次探索,理解算法
1、过渡:学到这儿,老师有理由相信我们五(4)班的每个同学都能独立地进行计算了,你们有没有信心来“试一试”吗?
①在书本第73页上独立完成试一试。
指名板演笔算过程,集体交流。提问:个位不够商1怎么办?计算到被除数的十分位还是不够商1,怎么办?
比较两题与例题的异同。
2,观察例题和试一试,在小组说说:小数除以整数应该怎样计算。
①预设:(①都是从高位算起;②除到哪一位商就写在哪一位的上面;③除的时候不够商1就商0)其实同学们说的这些就是整数除法的计算方法。也就是说小数除以整数,首先是按照整数除法的计算方法来算,但小数除法与整数除法最明显的区别就是……(商的小数点要和被除数的小数点对齐。)(学生齐读)
小结:小数除以整数,先按照整数除法的计算方法来算,商的小数点要和被除数的小数点对齐。
你认为在计算时还要提醒同学们注意什么问题?
四、巩固内化,熟练算法
1、P73改错过渡:相信同学们能正确而熟练的进行计算。
P76/2 : 4.26÷3 0.735÷7 2.76÷6 6÷8
2、五、全课总结
今天这节课我们学习了“小数除以整数”(手指课题齐读),现在你会计算小数除以整数了吗?在计算的过程中该注意什么?提醒大家要注意,个位不够0补位,余数添0继续除。
六、开放练习
厨房准备了72.72千克的香蕉准备放在一些盘里面,你认为可以准备( )几个盘,每个盘里分得( )千克。
七、板书设计
小数除以整数
9.6÷3=3.2(元) 12÷5=2.4(元) 5.7÷6=0.95(元)
八、作业设计
1、计算: 4.26÷3 0.735÷7 2.76÷6 6÷8
2、改错3、实际应用:厨房准备了72.7千克的香蕉准备放在一些盘里面,你认为可以准备( )几个盘,每个盘里分得( )
小学数学五年级教案7
【教学内容】
九年义务教育小学《数学》教科书(人教版)第九册。
【教材分析】
梯形而积的计算是在学生学会计算平行四边形、三角形的面积计算的基础上进行教学的。教材的编排不同于平行四边形和三角形。它的编排特点是引导学生把梯形转化为已经学过的图形。
再求面积。因此教材的编写跨越了数方格的感性认识阶段。引导学生思考怎样仿照求三角形面积的方法。用转化的思想。探究梯形面积的计算方法。这部分内容是学生以后学习圆面积和立体图形表面积的基础。
【学情分析】
学习本课内容时学生己经掌握了长方形、正方形、平行四边形、三角形的面积计算方法。而且在学平行四边形、三角形面积时。对转化、平移等数学思想的方法己经有了一定的认识。学生具备一定的知识和方法基础。因此。梯形面积的学习是运用旧知识解决新问题。实现迁移类推和新旧转化。进一步发展学生思维的创新能力和动手实践能力。
【教学目标】
1.使学生用转化的思想方法自行尝试学习,通过不同途径探究推导出梯形面积的计算方法。学会应用公式计算梯形的面积。
2.进一步发展学生利用旧知识解决新问题的能力。发展学生的创造思维能力、动手实践能力。通过讨论、争辩、操作和推理。提高学生解决实际问题的能力。发展学生的空间概念。
3.向学生渗透转化的思想。培养学生的合作意识和竞争意识。
【教学准备】
多媒体课件。同样大小的梯形纸片(至少四弓长)。剪刀。
【教学过程】
一、复习旧知,引入探究情境
1.教师谈话:请说出所学过的平面图形的面积计算公式。
2.教师出示一个梯形。提问:“这是什么图形?’’看到这个图形大家想提出关于这个图形的什么问题?
3.猜测:梯形面积计算能转化成我们以前学过的图形面积来进行计算吗?
4.下面就请同学利用手中的材料动手实践。进行验证。
【设计意图】
通过义习。梳理学过的直线型图形的而积计算公式。并通过质疑激发学生自主探究的。
二、自主探究,寻求规律
(一)推导面积计算公式1.谈话指导:请同学们根据我们以前学过的有关平面图形面积计算公式推导的知识和方法。利用自己手中的材料以小组为单位尝试推导梯形的面积。
2.学生尝试探究验证。教师巡视观察指导学生的学习方法并帮助学习有困难的小组。
【设计意图】
给学生提供充分动手动脑的机会,给学生利用旧知探求新知的时间。把知识产生的过程创造出来。培养学生的探究精神并学会探究的方法。
3.展示汇报自己的学习成果。
(1)让学生自由发表意见,说出自己转化推导的方法。
(2)教师配合学生的叙述。用课件演示梯形是如何转化成己学过的平而图形的,并让其他同学质疑、评价(这里可能会出现拼一拼、割补、分一分等多种方案)。
4.引导学生总结计算公式。
(”教师提问:“谁能总结出梯形的面积计算公式?请说明你的根据。”
(2)教师根据学生的回答进行小结并板书:
梯形的面积=(上底+下底)X高=25.根据推导过程和公式。让学生提出问题:
(1)二上底加下底”指的是什么?
(2)为什么要“除以2"?
(3)通过对三角形、梯形面积计算公式的学习。你有哪些新的发现和收获(让学生谈想法)?
6.教师小结:(略)7.让学生用字母表示出梯形的面积的计算公式:
【设计意图】
学生通过自主探究合作交流。不仅知道了梯形的面积计算公式。而且更明确如此计算的原因。达到“知其然。
更知其所以然”的学习效果。培养学生科学学习的习惯和创新能力。通过教师的课件演示,使学生形象地感知转化思想的.内涵。
(二)运用公式。进行计算1.出示例题:一条新挖的渠道,横截面是个梯形。渠口宽2.8米。渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?
2.学生自己尝试独立计算。
3.学生互相出题进行公式应用练习。
【设计意图】
通过学生互相出题训练。不但巩固了知识。而且实现学生真正的自主参与。同时充分地发挥了学生的聪明才智,使训练多样而有趣。变苦学为乐学。
三、巩固练习完成做一做。
2.完成练习十九的1-4题。
3.灵活变换条件。联系实际进行练习。
4.拓展尝试:下图是两个相同的汽角三角形补在一起。求涂色部分的面积。(单位:分米)
【设计意图】
灵活的练习是检验学习效果的有效方法。联系实际能充分体现学以致用的原则。数学来源于生活更应该服务于生活,因此。联系实际的练习才是更为科学的训练方法。
【教学反思】
本节课的学习是由学生独立思考、讨论、归纳、概括解决的。体现了学生主体的发展。但不足之处是:由于学生个体间发展的不平衡。因此并不是每一个学生都能去积极地思考、讨论。另外。还应多提一些开放性强的问题。使学生的思维得到充分的训练。
小学数学五年级教案8
学习内容:
人教版小学数学五年级下册教材第12—13页。
学习目标:
1.我能理解因数与倍数的含义。
2.我会有序地思考,掌握了找一个数的因数的方法。
3.我知道一个数的因数的个数是有限的。
学习重点:
理解因数和倍数的含义,掌握求一个数的因数的方法。
学习难点:
能熟练地找一个数的因数。
教学过程:
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
三、合作探究
1.小组讨论:乘法算式中的因数和这里讲的因数一样吗?
(1)我的想法:________________________________
(2)小组代表交流、汇报。
(3)自读课本第12页下面的.一段话。
2.自学课本第13页例1。思考:
(1)18的因数有________、________、________、________、________、________,共 有________个。
(2)18的最小因数是________,最大因数是________。它的因数的个数是________的。
(3)也可以这样表示: 18的因数
3.组内交流并讨论:怎样找最快,而且不容易遗漏?
我的想法:________________________________
4.小组代表汇报,总结。
5.试试身手(第13页“做一做”)。
小学数学五年级教案9
教学目标:
1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。
2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。
3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。
4、培养学生规范书写和自觉检验的好习惯。
教学重点:
1、 对等式的基本性质一的理解和运用。
2、 掌握解形如x+a=b的方程的依据、步骤和书写格式。
3、 能较为熟练地运用形如x+a=b的方程解决简单的实际问题。
教学难点:
1、 掌握解形如x+a=b的方程的依据、步骤和书写格式。
2、 较为熟练地运用形如x+a=b的方程解决简单的实际问题。
教学过程:
教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860
后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。
在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。
这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。
教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。
最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。
模式方法:观察――实验――讨论――交流――概括结论
作业设计:自主练习1-3题。
讨论要点
1、 教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。
2、 教学时,要关注学生的'算术思维向方程思维的转变。
3、 在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。
4、 教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。
活动总结
本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。
小学数学五年级教案10
设计意图:在设计的时候我想要引导学生学会看书,学会咬文嚼字,比如书上是这样写的:求两个数的最大公约数,一般先用这两个数公有的质因数连续去除,一直除到所得的商互质为止,然后把所有的除数连乘起来。在品味这段话时,有些学生会注意到“一般”这两个字,从而提出“为什么一般用这两个数公有的质因数连续去除,不用质因数去除行不行?”,教师可以引导他们通过向别人求教、上网查资料等方式,自己得出答案,即不用公有的质因数去除也行,也可用公有的合数去除,不过习惯上用两个数公有的质因数去除。解决这个问题之后,学生就会觉得数学语言是非常严谨的,一字一句均需斟酌。
教学要求
①使学生理解公约数、最大公约数、互质数的概念。
②使学生初步掌握求两个数最大公约数的一般方法。
③培养学生抽象、概括的能力和动手实际操作的能力。
教学重点 理解公约数、最大公约数、互质数的概念。
教学难点 理解并掌握求两个数的最大公约数的一般方法。
教学用具 投影仪等。
教学过程
一、创设情境
填空:①12÷3=4,所以12能被4( )。4能( )12,12是3的( ),3是12的( )。②把18和30分解质因数是 ,它们公有的质因数是( )。③10的约数有( )。
二、揭示课题
我们已经学会求一个数的约数,现在来看两个数的约数。
三、探索研究
1.小组合作学习
(1)找出8、12的约数来。
(2)观察并回答。
①有无相同的约数?各是几?
②1、2、4是8和12的什么?
③其中最大的一个是几?知道叫什么吗?
(3)归纳并板书
①8和12公有的约数是:1、2、4,其中最大的一个是4。
②还可以用下图来表示。
8 1 3
2 4 6 12
8 和12 的公约数
(4)抽象、概括。
①你能说说什么是公约数、最大公约数吗?
②指导学生看教材第66页里有关公约数、最大公约数的概念。
(5)尝试练习。
做教材第67页上面的“做一做”的.第1题。
2.学习互质数的概念
(1)找出下列各组数的公约数来:5和7 8和9 12和25 1和9
(2)这几组数的公约数有什么特点?
(3)这几组数中的两个数叫做什么?(看书67页)
(4)质数和互质数有什么不同?(使学生明确:质数是一个数,而互质数是两个数的关系)
3.学习例2
(1)出示例2并说明:我们通常用分解质因数的方法来求两个数的最大公约数。
(2)复习的第2题,我们已将18和30分解质因数(如后) 18=2×3×3 30=2×3×5
(3)观察、分析。
①从18和30分解质因数的式子中,你能看出18和30各有哪些约数吗?
②18和30的公约数就必须包含18和30公有的什么?
③18和30公有的质因数有哪些?
④18和30的公约数和最大公约数是哪些?(1、2、3、6(2×3))
⑤最大公约数6是怎样得出来的?
(4)归纳板书。
18和30的最大公约数6是这两个数全部公有质因数的乘积。
(5)求最大公约数的一般书写格式。
为了简便,我们把两个短除式合并成一个如: 18 30
让学生分组讨论合并后该怎样做?
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出最大公约数?
④为什么不把商也连乘进去?
(6)尝试练习。
做教材第68页的“做一做”,学生独立解答后点几名学生讲每步是怎样做的,最后集体订正。
(7)抽象概括求最大公约数的方法。
①谁能说说求最大公约数的方法。
②引导学生看教材第68页求两个数的最大公约数的方法。
四、课堂实践
做练习十四的1、2、3题。
五、课堂小结
学生总结今天学习的内容。
六、课堂作业
1.做练习十四的第4题。
2.做练习十四的12*题。
课后反思:教学"求最大公约数",课本共安排了三个例题及一个"做一做",教学时,当教师向学生介绍完用短除法求两个数的最大公约数之后,让学生讨论质疑其它二例时,学生A就提出:"两个数的最大公约数也就是这两个数的差。"教师问:"有什么根据?"学生回答说:"按照课本的三个例题:12和18的最大公约数是6;90和72的最大公约数是18;24、36和48的最大公约数是12;做一做40,60和80的最大公约数是20。"还真是呀!学生们很惊讶,教师了解到学生错误结论的由来,但不急于指出学生的错误,首先肯定了学生善于观察和思考的精神,接着又向学生指出:"是巧合呢,还是真有这样的规律存在呢?"学生为了验证,纷纷举例演算,就连平时较少开动脑筋的学生,也算得很起劲。过了一会,小B第一个发现象36和28,90和68的最大公约数就不是它们的差。教师又及时把这一信息交给学生,学生的研究热情被激发起来,课堂气氛异常活跃。下课了,大家的讨论还在继续着,并且乐此不疲。他们为了探求"规律",愉快地做了几十道求最大公约数的练习,牢固地掌握了知识。在教师创设的途径中,学生品尝到成功的喜悦,更激发了他们探求知识,孜孜以求,为学业成功更努力学习。
小学数学五年级教案11
教材分析:
“质数和合数”是九年义务教育小学数学五年级(上)第一单元的内容,在教材第10~11页;是学生学习了因数和倍数的意义,了解了2、5、3倍数的特征之后的重要知识,它是学生学习分解质因数、求公约数和最小公倍数的基础,在本章教学中起着承前启后的重要作用。
教学目标:
1、使学生根据因数和倍数的意义,会判断一个数是质数还是合数;
2、培养学生观察、比较、概括和判断能力;
3、向学生渗透“对立统一”的辨证唯物主义观点。
教学重点:
理解质数和合数的意义。
教学难点:
正确判断一个数是质数还是合数。
教学准备:
课件
教学教法:
新课程的数学教学强调:要培养学生用数学眼光、数学知识、方法去分析事物,思考问题。本课我主要采用“探究性学习指导法”,把“有意义的思考方法和习惯思维”放在教学首位,构建探索型的'教学模式,充分体现“以学生发展为本”的教育理念。
教学过程:
一、谈话引探,导入新课。
如:(1)、用哥德猜想引出课题。
(2)、结合自然数1—20的因数具体说说。(这样直奔主题的教学,为学生探究知识和巩固知识留下了足够的时间和空间。)
二、自主学习,探究新知。
首先让学生利用课件很快找出1~20各数的因数,铺垫探底。然后讨论怎样给这些数进行分类,怎样分比较合理?(把学生的思维导向于有意义的思考。)学生根据所学的知识有按偶数、奇数分的,有按2、3、5的倍数分的、也有按10以内、10以外的数分的等等,对于学生的分法,教师给于了鼓励,引导学生看书上怎么分的,观察因数的个数,以 “因数个数”的多少来分,学生很快以“只有一个约数的、只有两个约数的、有两个以上因数”分为三类。教师及时出示课件,然后让学生列举出相应的数。这时教师明确告诉学生;像2、3、5、7、11这样只有两个因数的数就叫质数。让学生通过观察每个质数的因数特点概括出质数的意义,并且要求学生按照质数的意义自己找出一些质数,找准确了说说找质数的方法(突出教学的重点)。同样道理,合数的意义就迎刃而解了。紧接着让学生看一个因数的数是谁?书上是怎么给它下定义的?然后出示一些数,让学生判断哪些数是质数?哪些数是合数?判断正确了让同学们互相交流判断方法,为什么又对又快?(从而突破教学难点。)
三、应用知识、巩固知识。
1、让学生根据学习资料,把1~20这20个数按照奇数、偶数、质数、合数进行分类,分类完成之后互相交流这些数之间的联系和区别。如2既是质数又是偶数;9、15既是奇数又是合数。(既巩固了新知识,又加强了知识之间的横向和纵向联系。)
2、出示闯关题,有填空、选择、判断、游戏,内容丰富、形式多样,闯关成功给予奖励。(目的是激发学生的学习兴趣,提高学习效率。)
3、小组合作学习制作100以内质数表,课件出示学习要求
(1)独立思考制作方法
(2)小组交流方法
(3)动手制作
(4)汇报展示。
4、课件出示100以内质数表,学生熟记。(便于今后的应用。)
5、 全课总结、课外延伸。
师生共同回忆这节课所学知识之后听一则数学信息。歌德猜想之一:任何一个大于4的偶数,都可以写成两个奇数(或素数)之和。并让学生了解到这个猜想目前证明得的是我国数学家陈景润,可惜离成功只差一步便离开了人世。听完后谈感想。(让学生的学习动机、学习兴趣、情感价值观得到进一步的提升。)
小学数学五年级教案12
教材简析
这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。教学重难点是结合具体情境理解等式和方程的意义和用方程表示简单的等量关系。
本信息窗展示的是国家一级保护动物白鳍豚、大熊猫、东北虎的图片以及相关文字说明。其主要信息有白鳍豚数量的变化情况;野生和人工养殖的大熊猫数量的关系;20xx年与20xx年人工繁育东北虎数量的比较。根据上述信息,引导学生提出相应问题,进而研究方程的意义。
教学目标
1、结合具体情境理解方程的意义,会用方程表示简单的等量关系。
2、借助天平让学生亲自参与操作和实验,在经历天平由平衡不平衡平衡的动态过程中,加深对方程及等式意义的理解。
3、使学生在学习数学知识的同时,体会数学与生活的密切联系,唤起学生保护珍稀动物的意识。
教学过程
一、创设情境 激趣导入
谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示信息窗1的三幅动物图片)
我们应该保护这些濒临灭绝的珍稀动物。今天这节课,就以这三种动物为话题,来研究其中的数学问题。
【设计意图】通过介绍国家一级保护动物白鳍豚、大熊猫、东北虎的数量变化情况的情境引入课题,学生比较感兴趣,乐于探究,激发了学生的研究兴趣。
二、合作探究 获取新知
1、找出白鳍豚这组资料的等量关系,用字母表示。
(1)提问:我们先来看白鳍豚的这组资料,你获得了哪些信息?
白鳍豚是国家一级保护动物,濒临灭绝。1980年约有400只,比20xx年多300只。
(2)根据情境图所提供的信息你能提出什么问题?引导学生提出:根据1980年约有400只,比20xx年多300只这句话写出等量关系式。
(3)先自己写一写,再与小组内的同学交流。
20xx年只数 + 300只=1980年只数
1980年只数 - 20xx年只数=300只
1980年只数-300只=20xx年只数
(4)教师板书20xx年只数+300只=1980年只数这个等量关系式,并提问:你能用含有字母的式子表示这个等量关系吗?先自己想一想,再把你的想法在小组里交流。
学生汇报:如用a表示20xx年的白鳍豚只数,上面的等式就可写成a+300=400。
(5)教师小结:刚才大家用了不同的字母来表示未知数。其实一般情况下,我们用字母x来表示未知数。上面的等式就可写成x+300=400(板书)。
【设计意图】由于直接让学生用含有字母的等式表示出白鳍豚20xx年只数和1980只数之间的关系,对于学生来说有一定的难度,因此把这个问题进行细化,减少坡度,学生容易理解掌握。
2、借助天平理解等式的意义。
根据x+300=400:等号左边求得是哪一年的只数?(1980年的只数)等号右边是哪一年的只数?(1980年的只数)
像上面这样表示左右两边相等的等式有哪些特点呢?下面,我们借助天平来研究一下。(出示天平)
(1)提问:你对天平有哪些了解?(如果学生对天平的用途、构造及使用方法不了解,教师可以做简单的介绍。)
(2)天平的左盘放了一个正方体,右盘是100克的砝码。放正方体的一头重。
提问:你发现了什么?你能想办法让天平平衡吗?
右盘加上50克的砝码,天平平衡了。
(3)天平左盘放入10克砝码,右盘放入20克砝码。
提问:观察天平平衡了吗?如何使它平衡?(左边再加上10克的砝码就平衡了。)
提问:根据天平平衡的道理,你能用一个等式表示这个天平左右两边的关系吗?
10+10=20(板书)
(4)天平左盘放入一个20克砝码和一个小正方体,右盘放入50克砝码。
谈话:小正方体的重量我们不知道,可以用X克来表示。用一个等式表示天平左右两边的关系,可以怎样写。
20+x=50(板书)
(5)出示两台平衡的天平:一台左盘放两个50克砝码,右盘放一个100克砝码。另一台左盘放4个x克的小方块,右盘放一个200克砝码。
要求:用等式表示出天平左右两边的关系。
50+50=100 4x=200(板书)
(6)谈话:通过前面的实验,我们知道天平平衡的现象可以用等式来表示。像前面我们研究的x+300=400借助天平就容易理解了。
【设计意图】此处这样设计旨在让学生借助天平的平衡原理,引导学生通过动手操作和实验,在经历天平由平衡不平衡平衡的动态过程中,初步体验和感受方程的含义。
3、找出大熊猫这组资料的等量关系,再写出含有未知数x的`等式。
(1)提问:继续看大熊猫的资料,你获得了哪些信息?
20xx年,我国野生大熊猫约有1600只,是人工养殖大熊猫数量的10倍。
(2)你能用含有字母x的等式表示出大熊猫20xx年人工养殖的只数与野生的只数的关系吗?
师生总结:
您现在正在阅读的青岛版小学数学五年级上册《方程的意义》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!青岛版小学数学五年级上册《方程的意义》教学设计人工养殖的只数10=野生的只数
10x=1600
如果用x表示人工养殖大熊猫的只数,那么x10=1600
(3)学生打开教科书57页,结合图示进一步理解以上等量关系。
【设计意图】通过用含有字母x的等式表示情境中数量间的相等关系,引导学生进一步体会方程的意义。
4、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。
(1)提问:继续看东北虎的资料,你获得了哪些信息?
预计到20xx年,全国最大的东北虎繁育基地的东北虎数量将达到1000多只,比20xx年的3倍还多100只。
(2)提问:根据以上信息你能提出什么问题?
引导学生提出:先用文字表示出东北虎20xx年的只数与20xx年只数的等量关系,再用含有X的等式表示,最后画一画,在天平上表示出这个等式。
(3)先自己写一写,再与小组同学交流。
学生汇报:
20xx年的只数3+100=20xx年的只数
列式为: 3X+100=1000 (板书)
画图为:天平的左盘是3个X和一个100,右盘是1000。
提问:这里的X表示什么?(x表示20xx年的只数。)
【设计意图】有了前面合作学习的基础,第三幅情景图的学习完全可以放手让学生自己研究,符合学生的认知学习规律。
5、揭示方程的意义。
(1)提问:刚才我们研究出这么多的等式,像x+300=400 10+10=20 20+x=50 50+50=100 4x=200 10x=1600 3X+100=1000,你能给它们分分类吗?
引导学生分成两类:含有字母的是一类,不含字母的是一类。
我们把含有未知数的这类等式叫做方程。(板书)
(2)组织学生讨论:X+5是不是方程?2+3=5是不是方程?说明理由。
(3)组织学生交流:判断是不是方程,你觉得必须符合什么条件?
方程必须含有未知数,还必须是等式。
【设计意图】通过分类比较、归纳总结,让学生发现方程的本质特征,进而提高学生比较、分析、判断、归纳的学习能力。
三、巩固练习 加强应用
1、出示自主练习1下面哪些式子是方程?让学生说说判断的依据是什么。
2、出示自主练习2,看图列方程。
学生独立完成,说说自己是怎样想的。
3、出示自主练习3,填一填。
学生独立完成。
【设计意图】练习题的设计是有层次性的,第1题判断哪些式子是方程,考察了学生对方程意义的理解;第2题重点使学生明确要根据天平平衡时左边质量=右边质量的关系列出方程;第3题则结合具体的情景,让学生写出等量关系式并列出方程,进一步加深了学生对方程意义的理解。
四、回顾反思 总结提升
谈谈这节课你有哪些收获?
总结:这节课我们以国家保护动物为话题,认识了方程,方程可以为我们的解决问题带来很多方便。
总设计意图:
本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。
教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出白鳍豚20xx年和1980年数量关系式,用含有x的等式表示熊猫、东北虎的数量变化情况等。
总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。
小学数学五年级教案13
教学目的:
1、拓宽学生学习的渠道,让学生通过到图书馆查资料,初步了解分数产生的条件、背景和发展史。
2、让学生在玩学具的过程中理解单位"1",感受什么是分数,归纳出分数的意义,培养学生实际操作和抽象概括能力。
3、让学生在轻松和谐的氛围中学习数学,体验学习数学的成功和愉悦,培养学生对数学的情感。
教学重点:
单位和分数的意义的教学。
教学难点:
突破一个整体的教学。
教具、学具:
苹果、一分米、方块、小棒、小旗、小刀、水彩笔。
教学过程:
一、介绍分数的产生
师:课前,老师让大家回去查阅资料,谁能结合你的资料来说说分数是怎样产生的事?(学生举手)
师:(指手里拿着一本书的女生)你来说说。
(女生拿着自己查的资料走到讲台前,把自己的资料放在实物投影下)
生说:我是从《中国少年儿童百科全书》上查到的。分数起源于分。在原始社会,人们集体劳动要平均分配果实和猎物,逐渐有了分数的概念。以后在土地计算、土木建筑、水利工程等测量过程中,当所用的长度单位不能量尽所量线段时,便产生了分数。
师:您查的挺好的。通过她查的资料我们可以知道分数起源于分。
师:(看到有学生举手,指其中一男生)你来说说。
男生:(拿着资料来到讲台上的实物投影前,指着资料书)我是从《新编小学生数学词典》上查到的。人类在生产劳动的长期实践活动中产生了分数,起初是使用具体的分数,如二分之一用"一半"来表示,四分之一是用"一半的一半"来表示,经过了相当长的一段时间后,才出现了诸如二分之一、三分之二等分数。
师:嗯,好,请回。通过他查的资料,我们可以知道最初的分数表现形式和现在的表现形式一样吗?(学生齐说不一样)1/2是用"一半"来表示1/4是用"一半的一半"来表示,那么,照此推算1/8就是(学生齐说一半的一半的一半。)
师:看来同学们是真理解了,那谁还有别的资料吗?
(学生举手)
师:(指一女生)好,你来。
女生:(拿着资料走到实物投影前展示)我是从资料书上查到的,我把它摘抄到我的笔记本上。分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
师:很好,看来,同学们的资料查的不错。今天我们就不一一交流了,建议课后大家再把查到的资料互相交流一下。通过这几个同学查的资料,我们可以知道分数实际上是由人们的生产生活的需要而产生的。
二、探索分数的意义
1、小组探究,共同参与。
师:我们三年级时对分数已经有了初步的认识,你能说出几个具体的分数吗?
(学生举手)
甲生:3/4,1/2,1/20,88/100
师:嗯,说的还挺多。
乙生:1/10,1/100,1/50,1/60
师:你也知道很多分数。
丙生:2/4、2/8、5/10、20/100
师:同学们已经知道了很多的分数,那要是给大家几种材料,你们能动手分一分,并且用分数来表示吗?
(学生说能)好,拿出老师给大家准备的材料,小组讨论一下。
(学生活动,小组讨论五分钟左右。教师巡视,参与小组活动,了解情况。)
2、汇报交流,力求创新。
师:大家得到分数了吗?哪个小组来说你们是怎样得到的?
(学生举手)
师:(指甲组)你们来说说。
(一个学生代表甲组,拿着一个苹果走到实物投影前)
甲组:我先把这个苹果平均分成了两份,取其中的一份就是二分之一。
(教师板书:平均分分数1/2)
甲组:我又把这个苹果平均分成了四份,取其中的一份就是四分之一。
(教师板书:1/4)
甲组:我又把这个苹果平均分成了八份,取其中的一份就是八分之一。
(教师板书:1/8)
甲组:这样,依次类推,可以分成许多份,得到许多分数。
师:行不行啊,老师感觉他里面有句话说的非常好,谁来说说。
生说:依次类推。
师:那你明白依次类推是什么,意思吗?
生说:懂,就是一个一个往下类推。
师:也就是说还可以再接着分,看来这个小组已经想的很透彻了,谁还有别的材料需要展示的吗?
(学生举手)
师:(指乙组)你们来说说。
(一学生代表乙组,拿着一分米的纸上来展示)
乙组:我们小组是把一分米平均分成了10份,其中的1份就是十分之→。如果把;2平均分成2份,其中的一份就是二分之一。如果把它平均分成5份F飞其中的一份就是五分之一c
(教师板书:1分米1/10)
师:他刚才说了很多分数。咱就按照这个同学刚才说的,把1分米平均分成10份,除了十分之一,我们还能得到别的`分数吗
一生:把这1分米平均分成10份,取其中的→份,就是十分之一取其中的两份,就是十分之二,取其中的三份就是十分之三,这样,依次推下来,就可以得到十分之几。
师:也就是表示其中几份就是它的十分之几,你们同意吗?
(学生齐说:同意)
师:谁还有别的材料需要展示吗?
(学生举手)
师:(指丙组)你们来说说。
(两个学生代表丙组,拿着八个方块到前面来展示)
丙组:我们把八个方块平均分成两份,取其中的一份,就是二分之
(教师板书:八个 1/2 )
丙组:把八个方块平均分成四份,取其中的一份就是四分之一,两份就是四分之二,三份就是四分之三。
(教师板书:1/4、2/4、3/4)
(教师看到下面同学有很多急着举手的)
师:你们有问题吗?
一女生:他把它平均分成4份,一份是两个方块,他为什么说是四分之一呢?展示的丙组男生回答:把这八个方块平均分成4份,其中的一份就是四分之一。
女生质疑:这其中的一份是两个方块,为什么说是1/4,我还不明白。
丙组男生:因为这两个方块组成一份。
师:你满意吗?
女生:不满意。师:不算很满意,那你们能再来解释解释吗?
丙组女生很急切的解释:因为它要分成4份的话,这两个方块,并不是论块,而是论份,这两个方块组成了一份,是四份中的一份,所以是四分之一。
师:你说的很有特点,看来这是一个难点。刚才同学们提的问题很有价值,我们要想得到一个分数,必须要把八个方块看成一个整体,这两个方块或者四个方块只是这个整体的一部分,我们就可以用分数来表示。
师:那谁还有别的材料需要展示。
(学生举手)
师:(指丁组)你们来说说
(一生代表了组,拿着10根小棒走到前面展示)
丁组:我这里有10根小棒,我把它平均分成10份,其中的这一份,就是十分之一,然后,再把它平均分成5份,其中的一份就是五分之一。再把它平均份成两分,其中的一份就是二分之一。
(教师板书:10根小棒1/10、1/5、1/2)
师:我想问你一个问题,我把10根小棒看成一个整体,平均分成两份,其中的一份是二分之一,那这一份是几根小棒?
生:是5根小棒。师:很好,请回,(指举手的同学)你想展示?
生:我这有6面红旗,我首先平均拿走一面红旗就是六分之一。拿掉两面红旗就是六分之二,依次类推,把六个红旗都拿完了,就是六分之六。
师:平均拿走一面红旗是什么意思?
生补充:我想换一种说法,就是把这六面红旗平均分成六份,拿走其中的一份就是六分之一。
师:你说的真好。我们要想得到几分之几时,必须要先把它平均分成几份。
(教师板书:6面小旗1/6)
3、抽象概括,构建新知。
师:我们刚才得到了很多的分数,(指黑板)以前我们研究过了分一个物体,(板书:一个物体)分一个计量单位。(板书:一个计量单位)今天我们主要研究了分多个物体组成的一个整体,(板书:一个整体)这些我们通常都可以把它们叫做单位"1"。(板书:单位"1")
师:除了这些你还能再举几个单位"1"的例子吗?
生:一个西瓜。
生:一个蛋糕。
生:一个苹果。
师:刚才同学都举的是一个物体的,还能举一些别的吗?
生:10个人。
生:10本书。
生:8个铅笔盒。
生:5瓶啤酒。
生:3块橡皮。
师:看来同学们已经理解了单位"1"。那你能结合刚才的这些例子用自己的话说说什么叫分数吗?小组先讨论讨论。
(小组讨论一分钟左右)
师:谁来说说。
甲生:'把一个物体平均分成几份,取其中的几份,就是几分之几。
乙生:把一个物体平均分成若干份,取其中的几份,就是几分之几。
师:刚才都是说分一个物体,还有没有别的啦?
丙生:把几个同样的物体平均分成若干份,取其中的几份,就是几分之几。
师:通过你们说的,教师知道你们已经明白了,那么到底数学家是怎样归纳的呢,请同学们看屏幕。
屏幕展示:把单位平均分成若干份,表示这样的一份或几份的数叫做分数。
找生读,学生质疑。
师:这就是我们这节课研究的分数的意义。
(板书课题:分数的意义)
师:那你能通过3/10,说说分数由哪几部分组成的吗?
生:分数线、分子、分母组成。
师:分母、分子各表示什么意思?
生:分母表示把一个物体平均分成几份,分子表示取了其中的几份。
师:这一物体也就是单位。
三、 巩固练习
1.用分数表示下面各图中的阴影部分。
2、填空;
(1)把一堆苹果平均分成5份,一份是这堆苹果的( )两份是这堆苹果的( )。
(2)把今天来上课的同学平均分成()组,一个组的人数是全()班人数的(),二个组的人数是全班人数的()。
3、糖块游戏。
拿走9块糖的1/3,拿走几块?为什么?再拿走剩下的1/3,拿走几块?为什么?再拿剩下糖的1/4,拿走几块?
四、总结(略)
小学数学五年级教案14
学习内容:
人教版小学数学五年级下册第23、24页。
学习目标:
1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。
2.我知道100以内的质数,记住了20以内的质数。
3.我能在自主探究中独立思考,合作探究时畅所欲言。
学习重点:
能理解质数、合数的意义,正确判断一个数是质数还是合数。
学习难点:
用恰当的方法找出100以内的质数;会给自然数分类。
教学过程:
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
3.试试身手:第23页做一做。
三、合作探究
1.小组合作,利用课本24页的表格,用恰当的方法找出100以内的质数,做一个质数表。
2.展示、交流:你们是怎样找出100以内质数的?
3.小组讨论:(1)有没有最大的质数或合数?(2)根据因数的个数,可把非零自然数分成哪几类?
我的想法________________________________
4.我能很快熟记20以内的质数。
5.独立思考:
(1)是不是所有的`质数都是奇数?(2)是不是所有的奇数都是质数?
(3)是不是所有的合数都是偶数?(4)是不是所有的偶数都是合数?
6.组内交流。
小学数学五年级教案15
设计说明
教材的意图不仅仅是要求学生掌握本节课的基本知识和基本技能,更重要的是要教给学生探索知识的方法和策略,鼓励学生在教师的引导下自主探索和研究数学知识,这样做的意义就在于将学生的独立思考、展开想象、自主探索、交流讨论、分析判断等探索活动贯穿于课堂教学的全过程,使学生不断获得和积累数学活动经验,培养学生的学习兴趣和学习能力。
1、突出动手操作的学习方式。
通过把正方体盒子剪开得到展开图的活动,引导学生直观认识正方体的展开图。通过学生沿着不同的.棱来剪,得到不同的展开图,让学生充分感知正方体不同的展开图,体会到从不同的角度去思考和探究问题,会有不同的结果。
2、渗透转化思想,发展空间观念。
引导学生先通过想象折叠的过程和折叠后的图形来帮助学生建立表象,再通过动手“折一折”的活动来验证猜想。让学生在反复展开和折叠的过程中体验立体图形与平面图形相互转化的过程,建立展开图中的面与长方体和正方体中的面的对应关系,渗透转化和对应的数学思想,发展空间观念,培养学生多角度探究问题的能力和空间思维能力。
课前准备
教师准备PPT课件,长方体和正方体模型
学生准备长方体和正方体盒子
教学过程
激趣引入,明确目标
师交待学习目标:
1、通过动手剪一剪、折一折,体验正方体展开与折叠之间的对应关系,加深对长方体、正方体的认识。
2、会根据长方体、正方体的特点或动手操作等方法判断某一图形折叠后能否围成长方体或正方体。
设计意图:师交代学习目标的作用,让学生明确这节课要做什么,学会什么。
合作交流,探究新知
活动一展开
提出活动要求:把一个正方体盒子沿着棱剪开,得到一个展开图。
1、教师做示范并指导学生操作。
第一:必须沿着棱剪;第二:正方体的每个面至少有一条棱与其他面相连。
2、学生动手剪,教师指导有困难的学生,并把剪得好的正方体展开图展示在黑板上。
3、小组交流剪出的不同形状的展开图。
4、全班交流:观察黑板上的这些不同形状的展开图,你发现了什么?
5、教师小结:同一个正方体,剪法不同得到的展开图也不同,共有11种不同的展开图。(课件出示正方体的11种展开图)
设计意图:让学生经历展开的过程,有利于培养学生的空间观念,同时也让学生感悟到同一个正方体展开的结果是多样的。
活动二折叠
提出活动要求:同桌合作,把同桌的展开图重新折叠成正方体。
1、同桌各自交换展开图,动手折一折。
2、找规律。(课件出示正方体的11种展开图)
师:观察这11种展开图,找一找有什么规律。
预设
生1:有6种中间是4个正方形的,两侧分别有1个正方形,形状不同。
生2:有3种中间是3个正方形的,两侧分别有2个和1个正方形。
生3:有1种中间是2个正方形的,两侧分别有2个正方形。
生4:有1种两行各有3个正方形的。
【小学数学五年级教案】上海花千坊相关的文章:
小学数学五年级教案12-13
小学数学五年级下册教案09-28
小学五年级数学的教案02-28
【荐】小学数学五年级教案01-28
小学数学五年级教案【热】01-28
【精】小学数学五年级教案01-31
小学数学五年级教案【精】01-31
【推荐】小学数学五年级教案01-31
【热】小学数学五年级教案01-31