上海花千坊

小学六年级数学比教案

时间:2024-11-23 10:59:39 晶敏 小学数学教案 我要投稿

小学六年级数学比教案(精选15篇)

  作为一位优秀的人民教师,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。教案要怎么写呢?下面是小编为大家整理的小学六年级数学比教案,欢迎大家分享。

小学六年级数学比教案(精选15篇)

  小学六年级数学比教案 1

  教学内容:

  p27倒数的认识,练习六全部习题。

  教材简析:

  这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

  教学要求:

  使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

  教学过程:

  一、用汉字作比喻引入

  1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。

  2、提一个开放性的问题:看到这个课题,你们想到了什么?

  (学生各抒己见)

  师生共同确定本节课的目标研究倒数的意义、方法和用处。

  二、新知探索:

  1、研究倒数的意义

  师:请大家看书p27第3行的.结语:乘积等于1的两个数叫做互为倒数。

  学生自学后,问:有没有疑问?

  师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  2、学生自主举例,推敲方法:

  (1)师:下面,请大家各自举例加以说明。

  (2)学生先独立思考,再交流。

  (a、以真分数为例;如:5/8的倒数是8/5真分数的倒数是假分数。)

  (b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)

  (c、以带分数为例;带分数的倒数是真分数。)

  (d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

  (e、以整数为例;整数相当于分母是1的假分数)

  学生举例的过程同时将如何寻找倒数的方法也融入其中。

  3、讨论0、1的情况:

  1的倒数是1.0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1.0和任何数相乘都得0,不可能是1,所以0没有倒数。)

  4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)

  三、反馈巩固:

  1、完成练一练。

  学生独立完成后,集体订正。重点问:8的倒数是几?

  2、练习六5(判断)

  3、补充判断:

  a、a是自然数,a的倒数是1/a。

  小学六年级数学比教案 2

  教学目标:

  1、在具体的情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

  2、能计算出实际问题中“增加百分之几”或“减少百分之几”,提高与用数学解决实际问题的能力。

  3、在解决问题的过程中体会百分数与现实生活的密切联系。

  教学重点:

  在具体的情境中理解“增加百分之几”或“减少百分之几”意义。

  教学难点:

  能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力。

  教学关键:

  充分利用学生已有的知识基础,集合具体的实例让学生理解“增加百分之几”或“减少百分之几”的意义。

  教学过程:

  一、复习引入

  1、复习

  师:关于百分数,你们已经学过那些知识?

  指名回答,引导学生回忆已学的有关百分数的知识。根据学生的回答,教师板书

  百分数的意义

  小数、百分数、分数之间的互化

  百分数的应用

  利用方程解决简单的百分数问题

  2、引入

  师:从这节课开始,我们继续学习有关百分数的知识。

  二、探索新知

  1、创设情景,提出问题

  盒中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?

  根据这一情景,你能获得哪些信息?

  指名回答,引导学生认识“水结成冰,体积会增加”这种物理现象。

  师:你认为“增加百分之几”是什么意思?

  指名回答,如果学生感到困难,教师可以通过画以下线段图帮助学生理解“增加百分之几”的`意思是“冰的体积比原来水的体积多的部分是水体积的百分之几”

  师:你能独立解决这一问题么?那就请你试一试。

  2、自主探索解决问题

  (1)自主探索。

  让学生独立思考,解决情景图中提出的问题。教师巡视,及时了解学生中典型的算法。

  (2)合作交流。

  指名板演,学生可能会提供以下两种算法

  方法1:(50—45)÷45

  =5÷45

  ≈11%

  方法2:50÷45=111%

  111%—100%=11%

  全班交流时,教师要让学生说一说具体的想法。通过交流,引导学生认识

  方法1:先算增加了多少立方厘米,再算增加了百分之几。

  方法2:先算冰的体积是原来水的体积的百分之几;再算增加百分之几。

  3、即时练习。

  先让学生独立解决问题,再组织全班学生交流。全班交流时,教师重点引导学生理解“降低百分之几”的意义。在本题中,“降低百分之几”的意思是降低的钱数占原来的百分之几。

  三、巩固练习

  指导学生完成课本练一练中的第1题至第5题。

  免责声明:除正式文件通知外,好研网所有文章及所有评论只代表作者个人观点,不代表好研网及海南省教育研究培训院任何观点,所有文章文责自负,若有任何非法及不当信息,请与我们联系,我们会在第一时间作出相应的处理。

  小学六年级数学比教案 3

  教学目标:

  1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。

  2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。

  3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

  教学过程:

  一、谈话导入

  1、出示苹果、梨、橘子的图片问:起一个总的名称是什么?

  2、出示:仿照第一题填空

  (1)时间:3小时20分2小时45分

  (2)总价:5元()()

  (3)():6千克800克3吨350克

  填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗?

  二、学习新课

  (一)相关联的量

  教师做实验,向弹簧称上加钩码问:

  (1)这其中有哪两种变化着的量?

  (2)弹簧长度为什么会变化?

  指出:弹簧长度是随着钩码数量的变化而变化的,像这样的两种量我们把他们叫做相关联的量。

  追问:现在你知道什么叫相关联的量了吗?你能举例说明吗?

  (二)学习成正比例的量

  1、出示19页表格

  观察图像,填表,回答下面的问题:

  (1)表中有哪两个相关联的量?

  (2)正方形的周长是怎样随着边长的变化而变化的?

  (3)正方形的面积是怎样随着边长的变化而变化的?

  (4)它们的`变化规律相同吗?

  小组讨论交流汇报

  2、20页第2题

  3、正比例的意义

  (1)例1和例2有什么共同点?(两种相关联的量,比值一定)

  师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。

  问:现在你知道什么叫成正比例的量了吗?自由说说指生回答阅读课本

  师板书关系式:y/x=k(一定)

  (2)那么,要判断两种量是否成正比例的量该看什么呢?

  三、巩固提高:19页说一说。

  四、全课小结

  小学六年级数学比教案 4

  教学目标:

  1、知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

  2、过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

  3、情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

  教学重点:

  理解比例的意义,探究比例的基本性质。

  教学难点:

  探究比例的基本性质和应用意义,会判断两个比能否组成比例。

  教学过程:

  一、创设情境,设疑激趣

  同学们,国旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?你对国旗的大小有哪些了解?

  学生思考回答(挖掘学生生活经验)

  同学们知道的真多,说明同学们平时认真观察,是个有心人。

  二、引导探究,自主建构

  活动一:探究比例的意义

  1、你了解到哪些关于国旗大小的知识?

  学生交流,给学生充分的交流机会。

  2、你们仔细观察,结合我们上节课学的比的相关知识,估计一下每种规格国旗长和宽或者宽和长之间是否存在什么规律?

  (1)猜测

  预设:生1、长和宽的比值相等;生2、宽和长的比值相等,

  (2)小组验证

  每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。

  (3)展示交流小组验证结果,学生到黑板前板书得出结论。

  预设:每种国旗的长和宽的比都是3:2,他们的比值相等。

  每种国旗的宽和长的比是2:3,他们的比值相等。

  教师小结:240:160与144:96的比值相等我们可以把比值相等的式子写成240:160=144:96或240/160=144/96

  我们把表示两个比相等的式子叫做比例,组成比例的四个数叫做比例的项,两端的两项叫做比例的(外项),中间的'两项叫做比例的(内项)。括号中的可以让学生说一说。你能说出一个比例吗?说一说你是怎么理解比例的?

  怎么判断两个比是不是成比例?

  试一试,判断下面哪组中的两个比可以组成比例。

  2:3和6:9 4:2和28:40 5:2和10:4 20:5和1:4

  活动二:探究比例的基本性质

  1、利用学生列举的比例和判断题中的比例,大胆猜想一下,每个比例两个内项和两个外项之间会存在什么关系?

  2、小组内验证猜测结果

  3、展示验证猜测情况。得出结论,

  预设:

  “在比例里,两个外项相乘的积就等于两个内项相乘的得数”。

  “在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。

  教师归纳总结。

  同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  板书:比例的基本性质。

  谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)

  三、强化训练、应用拓展

  同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?

  1、判断下面哪组中的两个比可以组成比例?

  (1)6:9和9:12

  (2)1/2:1/5和5/8:1/4

  (3)1、4:2和7:10

  (4)0、5:0 、2和10:4

  2、判断。

  (1)表示两个比相等的式子叫做比例()

  (2)0、6:1、6与3:4能组成比例()

  (3)如果4a=5b,那么a:b=4:5()

  3、填空

  5:2=80:()

  2:7=():5

  1、2:2、5=():4

  在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是()。

  在一个比例里,两个内项的积是12,其中一个外项是2、4,另一个外项是()。

  4、写出比值是5的两个比,并组成比例

  5、根据3a=5b把能组成的比例写出来。

  四、自主反思、深入体验

  通过这节课的学习你有什么收获?

  小学六年级数学比教案 5

  教学内容:

  教材第9页例5、练一练,练习二第5~9题。

  教学要求:

  使学生进一步认识体积的计算方法,能根据不同的条件求圆柱的体积,学会计算圆柱形容器的容积,井能应用于实际求出所容物体的重量。

  教学重点:

  计算圆柱形容器的容积。

  教学难点:

  根据不同的条件求圆柱的体积。

  教学过程:

  一、复习旧知

  1.求下列圆柱的体积(口答列式)。

  (1)底面积3平方分米,高4分米;

  (2)底面半径2厘米,高2厘米;

  (3)底面直径2分米,高3分米。

  追问:圆柱的体积是怎样计算的.?(板书:V=Sh)

  2.复习容积。

  提问:什么是容积?它与物体的体积有什么区别?我们是按什么方法计算容积的?

  3.引入新课。

  我们已经学习过圆柱的体积计算,知道了容积和容积的计算方法。这节课,就在计算圆柱体积的基础上,学习圆柱的容积计算。(板书课题)

  二、教学新课

  1.教学例5。

  出示例5,读题。提问:这道题求什么?你能计算它的容积吗?请大家仔细看一下题目,解答这道题还要注意些什么?(统一单位或改写体积单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。同时注意是怎样统一单位和取近似值的。

  2.新课小结。

  提问:求圆柱形容器的容积要怎样计算?如果知道圆柱底面的半径或直径,怎样求圆柱的体积?

  三、巩固练习

  1.做练一练第1题。

  指名两人板演,其余学生分两组,每组题做在练习本上。集体订正。

  2.做练一练第2题。

  让学生在练习本上完成。指名学生口答算式,老师板书。结合让学生说一说是怎样想的。

  3.口答练习二第6题。

  让学生默读题目。提问:第(1)题怎样想?求出了容积怎样求第(2)题?为什么?

  4.做练习二第9题。

  让学生做在练习本上:指名口答算式或方程,并让学生说既怎样想的。

  四、布置作业

  课堂作业:练习二第7、8题。

  家庭作业:练习二第5、6题。

  小学六年级数学比教案 6

  教学目标:

  1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。

  2、掌握求比值的方法,并能正确求出比的比值。

  3、培养学生抽象、概括能力。

  教学重点:

  理解比的意义,掌握求比值的方法。

  教学难点:

  理解比的意义,建立比的概念

  教学过程:

  活动一:

  同学们,在每个星期一的早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。

  课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?

  在学生的回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。

  活动二;

  (一)探究同类量的`比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?

  同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?

  让学生举出生活中这样的例子。

  (二)探究非同类量的比

  课件出示书中的第二个红点问题。

  让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?

  再让学生举出生活中这样地例子。

  活动三:

  仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)

  通过刚才的学习,我们理解了比的意义,在课本的78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。

  课件出示问题:

  ⑴、比的读、写法?比都有哪些表示形式?

  ⑵、比的各部分名称?如何求比值?

  ⑶、比和除法、分数有哪些联系?

  ⑷、比的后项能不能是0?为什么?

  引导学生起来交流,在学生交流的基础上有针对性的板书。

  活动四:

  1、填一填。

  ⑴、把2克盐溶解在100克水中,盐和水的比的()。盐和盐水的比是()。

  ⑵、一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是(),比值是()。

  活动五;

  学生谈收获。

  小学六年级数学比教案 7

  教学目标

  1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系。

  2、培养学生比较、分析和概括等思维能力。

  教学重难点

  使学生认识比的'意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系

  教学准备

  幻灯片

  教学过程设计

  教学内容

  师生活动

  备注

  一、引入新课

  二、教学新课

  三、巩固联系

  四、作业

  1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)

  引入新课

  2、出示两道文字题

  (1)3千米是5千米的几分之几?

  (2)8吨是4吨的几倍?

  学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。

  1、学生用十分钟自习书本52到53页

  2、问:通过自习你知道了哪些知识?还有哪些疑问?

  3、小组内互相说,解决问题。

  4、教师请个别同学说,然后师生一起探讨、研究。

  5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。

  6、说明相关注意点。如:单位、比值、名称、写法、读法

  1、书本53页练一练

  2、练习十二1、2

  练习十二3、4、5

  小学六年级数学比教案 8

  教学目标:

  1、在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

  2、经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

  3、在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

  教学重点:

  理解比的意义以及比与分数、除法之间的关系。

  教学难点:

  理解比与分数、除法之间的关系,明确比与比值的区别。

  教学准备:

  课件,学具。

  教学过程:

  一、创设情境,揭示课题

  1、课件出示:2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。

  教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

  预设情况:

  (1)长比宽多多少厘米?15-10;

  (2)宽比长少多少厘米?15-10;

  (3)长是宽的多少倍?15÷10;

  (4)宽是长的几分之几?10÷15。

  2、揭题:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法──“比”来表示。(板书课题:比的意义)

  【设计意图】利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时对学生进行爱国主义教育。

  二、探究新知,理解比的意义

  (一)同类量的比

  师:刚才我们用“15÷10”表示长是宽的多少倍,可以说成长和宽的比是15比10,记作15:10。那么,10÷15表示宽是长的几分之几,怎样用比表示它们的关系呢?(可以说成宽和长的比是10比15,记作10:15。)

  师:想一想15比10和10比15一样吗?它们有什么不同?(引导学生理解比的前项、后项所表示的意义不同。)

  (二)不同类量的比

  课件出示:“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。那么飞船进入轨道后平均每分钟飞行多少千米?

  1、读题理解题意,说说知道了哪些信息?

  2、独立解答,说清解题思路。(速度可以用“路程÷时间”表示。)

  3、尝试用比表示路程和时间的关系。(路程和时间的比是42252比90,记作42252:90。)

  (三)比较分析

  1、观察比较。

  师:观察这三个比,说说它们有什么联系与区别?(引导学生发现这三个比都表示相除的关系,但前两个比中两个量都表示长度,相比的两个量是同类量;第三个比中的两个量,一个表示路程,一个表示时间,是不同类量,不同类量的比可以表示一个新的量。)

  师:想一想,路程与时间的`比可以表示哪个量?(速度)

  2、归纳:什么叫比?(板书:两个数的比表示两个数相除。)

  【设计意图】在比较分析中让学生进一步感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

  三、自主学习,加深认识

  (一)深化理解

  1、自学比的相关知识。

  学生自学教材第49页“做一做”之前的内容,思考以下问题:比各部分的名称是什么?怎样求一个比的比值?

  2、汇报交流。

  (1)比各部分的名称。

  课件出示:15:10=15÷10=

  ,让学生说出比的各部分名称。(板书:前项、比号、后项、比值。)

  (2)比值的意义。

  师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

  (3)练习:求出下列各比的比值:

  3:5;0、4:0、16;

  :8。

  师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

  【设计意图】自主学习也是学生探索问题、解决问题的重要途径。教师把学习的主动权交给学生,引导学生在抽象概括出比的意义的基础上自主学习比的相关知识,促进学生自主探究能力的发展。

  (二)沟通联系

  1、师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

  讨论后根据学生交流反馈填写下表:

  联系

  区别

  比

  前项

  :(比号)

  后项

  比值

  一种关系

  除法

  被除数

  ÷(除号)

  除数

  商

  一种运算

  分数

  分子

  —(分数线)

  分母

  分数值

  一个数

  2、请尝试用字母表示比和除法、分数之间的内在联系。

  板书:。

  师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15:10也可以写成,仍读作“15比10”。

  3、师:足球比赛中的比分3:0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

  【设计意图】在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

  四、巩固知识,应用拓展

  1、P49“做一做”第1题。

  (1)出示课件,让学生根据条件和要求写出比并求出比值。反馈交流时,让学生说说两个相比的量是同类量吗?并说说有什么发现?(发现是同类量的比,这两个比的比值相等。)

  (2)提问:小敏所花的钱数和练习本数之比是():(),比值是()。

  请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

  【设计意图】结合具体情境帮助学生巩固比的概念,为以后学习比例打下基础。

  2、P49“做一做”第2题。

  学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

  【设计意图】通过练习,引导学生进一步理解比和除法的关系,学会灵活运用所学知识解决实际问题。

  3、练习十一第1题。

  (1)请学生独立完成,反馈交流时引导学生明确比的前项、后项是有顺序的,前项、后项所表示的量与数据之间必须一一对应;第(3)题请学生说说比值的具体含义是什么。(表示平均每人制作的模型数量。)

  (2)提问:你还可以写出哪几个比?说出它们的具体含义。(引导学生说出多个量的比。)

  【设计意图】在具体情境中,教师充分挖掘习题资源,引导学生从量与量的关系这一角度去认识比,明确两个量(多个量)的比表示的是它们之间的倍数关系,进一步加深对比的意义的理解,深化对比的认识。

  五、回顾总结,交流收获

  师:说说这节课我们学习了什么?你有什么收获或问题?

  【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己知识掌握情况。

  小学六年级数学比教案 9

  教学内容:

  比的意义。

  教学目的:

  1.使学生理解比的意义,知道比各部分的名称;学会求比值的方法,能正确地求出一个比的比值;理解比同除法、分数的关系。

  2.培养学生比较、分析、抽象、概括和自主学习的能力。

  教学重点:

  使学生理解比的意义。

  教学过程:

  一、创设情境

  同学们,在我们的生活中,经常可以发现两个数量之间有关系。

  1、比如说,周老师今年25岁,这位同学你今年几岁啊?(指着第一位同学)(12岁)

  师:大家能列个算式表示出我们年龄之间的关系吗?

  (25-12=13)这个是相差关系。

  师:还可以用别的方法进行比较吗?

  生;12除以25求的是倍数关系。

  师:好的,请坐!

  2、请这组同学起立,我们一起来数一数,有几个男生,几个女生啊?(老师指着一起数,男生5人,女生3人)

  师:除了表示出他们人数之间的相差关系,你还能列什么算式表示出他们之间的关系呢?

  生:倍数关系。

  3、我们以前还学过这样的题,看大家还记得吗?看屏幕:

  一辆汽车2小时行驶90千米,平均每小时行驶多少千米?

  学校用150元买来3个小足球,每个小足球多少元?

  自己读题,看看每道题求的是什么?怎样列式。

  交流:谁来说第1个小题,指名回答,根据回答板书:

  (电脑出示:速度90÷2)

  这里的90表示的是(路程),2表示的是(时间)

  那你能说一说数量关系吗?(速度=路程÷时间)

  这里的速度表示的就是路程与时间的关系。

  下一道呢?指名回答,

  (电脑出示:单价150÷3)

  数量关系式是什么呢?(单价=总价÷数量)

  单价表示的就是总价和数量的关系。

  好极了,请坐

  师小结:我们看这些题都是用除法算式来表示两种数量之间的关系。

  二、探究新知

  (一)教学比的意义。

  在我们日常的工作和生活中,常常要把两种数量进行比较,今天我们就来学习一种新的比较两种数量关系的方法。叫做“比”,一起来研究“比的意义”。(板书:比的意义)

  1、这里的老师年龄是同学年龄的几倍用25÷12,可以说成“老师和同学年龄的比是25比12”

  (电脑演示:老师和同学年龄的比是25比12)

  一起读一下。

  可以记作25:12(电脑演示25:12)

  这里中间的两个圆点叫做比号,读作比。

  那同学年龄是老师年龄的几分之几就可以说成同学和老师的年龄比是多少啊?(电脑演示:同学和老师年龄的比是12:25)

  2、那你能把这句话变一个说法吗?

  男生人数是女生人数的几倍可以说成“男生人数与女生人数的比是5:2”(电脑演示)

  那如果是2:5呢?应该是谁和谁的比呢?

  (电脑出示2:5)(电脑演示:女生和男生人数的比)

  所以我们在说比的时候要有顺序地说。

  3、那么路程÷时间=速度可以怎么说呢?(指着算式90÷2问)

  你来试试:(路程和时间的比是90比2)

  也就是速度可以说成是――(电脑演示:路程和时间的比)

  4、单价可以说成什么呢?

  生:单价可以说成是总价与数量的比(电脑演示:总价与数量的比)

  5、那么从刚刚这些例子中我们可以看到,两个数相除,又可以说成这种比的形式。你能不能说说什么是比呢?

  先在组里互相说说,开始。(学生说,教师巡视)

  谁愿意来说说?(多说几个)

  把他们的意见综合一下就是两个数相除又叫做两个数的比。

  (板书:两个数相除又叫做两个数的比。)

  一起读一下。这就是比的意义。比表示的就是两个数相除的关系。

  7、那你们能不能自己举个用比表示两个数量关系的例子呢?同桌先相互说说。(学生说)

  8、交流:学生回答,教师小结。这些都可以说成比。

  9、刚才我们通过观察,研究,发现“两个数相除又叫做两个数的比”,并知道了比的写法,那你会写比了吗?一起来试试看,完成练习第1题。

  (二)教学比的'读写法,各部分的名称、求比值的方法

  1、我们已经理解了比的意义而且学会了怎样来写比。那比是由哪几部分组成的?各部分名称又是什么呢?我想通过大家的自学,一定能很快解决。请大家对照要

  (学生自学3分钟)

  (电脑出示电脑自学提纲)

  (1)什么叫比的前项?什么叫比的后项?什么叫比值?

  (2)怎样求比值?

  (3)“试一试”(完成练习第2题)

  2、学生交流。

  好,我们来交流一下你们的自学情况。

  (1)指名学生回答问题1,教师板书

  我们以5:3(板书5:3)为例,你能具体向大家介绍一下吗?

  (比号前面的5叫做比的前项)

  (比号后面的3叫做比的后项)

  比的前项除以后项所得的商,叫做比值。

  (2)那怎样来求比值呢?

  (只要把前项除以后项)

  以5:3为例呢?怎样求比值?(板书:=5÷3=5/3比值)

  师:通过刚才的练习我们可以发现,比值可以用分数表示,也可以用小数表示,有时也可以是整数。当比值用分数表示时一定要是最简分数。

  3、刚刚我们已经知道了比的写法,其实比还有另一种写法,同学们一起看。

  例如5:2(教师指着5:2讲解)还可以写成分数形式。

  我们一起来书空一下,注意:写的时候要从上往下写,它还是一个比,而不是分数,所以仍读作5比2。(板书:仍读作5比2),

  小学六年级数学比教案 10

  教学内容:

  《分数的意义》第一课时。

  学情分析:

  学生在三年级学习《分数的初步认识》时,已经借助操作、直观,初步认识了分数,已经知道了分数的各部分的名称,会读、会写简单的分数,还会比较分数大小及进行简单的同分母分数加、减法。

  教学设想:

  本节课中单位“1”和分数单位这两个概念教学非常重要,应从直观到抽象,利用操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,使学生真正题解这些概念的意义。

  教学目标:

  1.在学生原有知识基础上,使学生知道分数的产生,理解分数的意义,知道分数各个部分和分数单位的含义。

  2.利用操作、讨论及交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

  3.培养学生的抽象、概括能力。

  教学重点:

  明确分数和分数单位的意义,理解单位“1”的含义。

  教学难点:

  单位“1”的理解。

  教具和学具:

  长方形白纸、一米长的绳子、多媒体课件。

  教学过程:

  一、创设情景,温故引新。

  师:我们已经初步认识了分数。哪一位同学来说说几个分数?你知道分数各部分的名称吗?

  师:那你们知道分数是怎样产生的吗?

  二、教学分数的产生。

  1.在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的`情况)。课件呈现情境图,介绍分数的起源和发展历史。

  2.计算中也遇到这样的问题。

  3.课件展示分物不能得到整数的情况。

  .总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。因此分数是人类为了适用实际需要而产生的。

  三、教学分数的意义。

  1.师:下面老师要先考考大家,你能举例说明1/2的含义吗?(多媒体出示题目,学生口答)

  出示一个饼平均分成两份。

  师:每一块可以用什么分数表示?它表示什么意思?

  师强调:一定要平均分(板书:平均分)。

  展示把一个长方形和1米长的绳子平均分。

  学生说一说每份与总数的关系。

  2.重点对一些物体平均分,每一份与总数的关系,试着用分数来表示。认识单位“1”。

  师:利用这三种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  生:一张长方形纸、一米长的绳子、6个小立方体。

  师:像这样把一张长方形纸平均分,我们可以称之为把一个物体平均分。

  把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。

  把8支笔平均分给4个同学,我们又可以称之为把一些物体平均分。

  师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

  师:像这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,

  教师强调:

  ①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个梨、一枝铅笔、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。

  ②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

  概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  用学具创造出一个分数,同桌间说说你这个分数的意义。

  理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份” 、“这样的一份或几份”分别是分数中的什么?

  小组交流。后教师小结。

  师:接下来老师想出几道题来考考大家,看看哪位同学学的又快又好。

  ①把文具盒里的所有铅笔平均分给4位同学,每个同学得到这盒铅笔的几分之几?

  生:1/4

  师:为什么可以用1/4来表示?

  师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?

  师:现在这个文具盒里有8支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

  师:如果我再增加2支铅笔,把10支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?

  师:为什么同样是1/2,铅笔的支数不一样?

  生:分小组讨论

  师:是啊,因为一个整体表示的具体数量不同,所以同样是1/2,铅笔支数也就不一样了。

  四、教学分数单位。

  师:整数有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

  多媒体出示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。

  师:举例说明,并说出几个分数让学生回答,后让学生自己也说一说。

  五、小结。

  今天这节课我们学习了?你有哪些收获?

  练习:数学书上做一做。

  小学六年级数学比教案 11

  教学内容:

  苏教版三年级下册P

  教学目标:

  1、结合具体情境使学生初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。

  2、通过观察思考、比较分析、综合概括,经历小数含义的探索过程,让学生主动参与,学会讨论交流,与人合作。

  3、使学生进一步体会数学与生活的密切联系,培养学生自主探索与合作交流的习惯。通过了解小数的产生和发展过程,提高学生学习数学的兴趣,增强爱国情感。

  教具准备:

  多媒体课件

  教学过程:

  一、情境导入:

  小明搬新家了,家里需要一张新书桌,妈妈让小明自己到商店挑选,但是要记录下所选书桌的长和宽各是多少米。接到任务后,小明邀请好朋友晓红一起来到商店。我们看一看他们所选的书桌是什么样的?(课件演示)

  (评析:开课创设与学生生活和学习内容相适应的情境,促使学生在生动、具体的情境中主动学习数学,让学生感受到生活中处处有数学。)

  二、新知探索:

  1、认识整数部分是0的小数。

  ①从长5分米,宽4分米这两个信息中你们了解到什么?

  ②xx的要求是用米作单位,5分米、4分米究竟是多少米呢?运用前面所学到的知识想一想。

  ③5分米是几分之几米?4分米是几分之几米?

  随着学生的回答,师指出:5分米是把1米平均分成10份,5分米是其中的5份,可以用分数5/10米表示。

  (评析:运用学生已有的知识作为新知识的切入点,符合学生的认知规律。同时教师引导学生通过阅读信息,学习分析信息获取知识,又巧妙实现了由生活问题到数学问题的转移。)

  随着学生的回答,师指出:5分米的长度,是把1米平均分成10份,5分米是其中的5份,可以用5/10米表示。

  除了用5/10米表示以外,还可以用米来表示。

  请学生仔细看,米是怎样写的?读作:零点五

  ④4分米是几分之几米?用小数怎样表示呢?(课件演示同上)

  ⑤7分米呢?学生回答后完成想想做做第一题,填完后小组内交流:为什么要这样填?

  ⑥学生汇报:

  课件演示

  1分米 3分米 7分米 9分米

  1/10米 3/10米 7/10米 9/10米

  米 米 米 米

  仔细观察:

  你发现分数十分之几可以写成小数什么?零点几就表示什么?

  ⑦动手操作:

  用一张长方形的纸折出2/10,再用小数表示出来。

  再用一张长方形的纸折出。

  小结:

  十分之几可以写成小数零点几,零点几就表示十分之际。

  板书课题:小数的意义和读写

  小结:

  小数是在人们实际测量和计算的需要中产生的,在我们实际生活中有着非常广泛的应用。我国古代数学家刘徽在一千七百多年前就开始应用十进分数。(课件介绍古代数学家刘徽)

  (评析:教师适时的在数学教学中进行德育渗透,激发学生的民族自豪感,增强学生的爱国情感。)

  说一说你还在哪些地方见过小数。

  2、认识整数部分不是0的.小数。

  小明和晓红选完书桌后又在商店里转了转,看到圆珠笔1元2角,笔记本3元5角,你们能用小数表示出圆珠笔和笔记本各是多少元吗?

  ①学生自主探究,再在小组中合作交流。

  ②学生汇报,并将板书补充完整。

  1元2角还可以写成 元 读作: 一点二

  3元5角还可以写成 元 读作: 三点五

  小结:

  几元几角分成两部分,几元和几角,先把几角表示成零点几元,再和几元合起来是几点几元。

  ③观察小数:这些小数有什么特点?

  小数中间的点叫做小数点,小数点把小数分成了两部分,小数点的左边是整数部分,右边是小数部分。

  我们以前学过的表示物体个数的1、2、3是自然数,0也是自然数,它们都是整数。今天学的、、和都是小数。

  ④任意写出几个小数,在小组中读一读。

  全班交流时指名说一说整数部分是几?分数部分是几?

  (评析:如何在课堂上开展探索性学习是当前数学教师所探索的问题。本段教学在这方面做了较好的展示,学生充分运用自主探究动手实践合作交流的学习方式,开展多角度、多层次的探究活动。学生的交流与教师的适时引导交相辉映,将探究活动不断推向深入。)

  三、应用反思:

  1、小明和晓红在商店里还看到很多食品。(课件演示想想做做第二题。)

  你能用元作单位表示出这些食品的价格吗?

  2、他们还看到有的商品是这样表示价格的。(课件演示想想做做第四题。)

  先读出这些商品的价钱,再说一说是几元几角。

  3、小明和晓红在商店里不仅选到了自己喜欢的书桌,而且还学会了一个数学知识,你们学会了吗?

  完成想想做做第五题。

  (评析:练习的设计始终使学生处在生活的情境中解决问题,不但提高了学生继续学习的兴趣,而且使学生切实体会到数学与生活的密切联系。)

  四、课后延伸:

  小数在我们生活、生产中处处可以用到,同学们要学会用数学的眼睛观察生活,用数学知识解决生活中的实际问题。

  [总评:本节课从学生的现实生活出发,极力选取学生身边的事例,使生活素材贯穿于整个教学的始终。注意将数学与学生生活紧密相连,遵循了数学源于生活,实现了数学的应用价值。具体地说有以下几个特点:

  1、创设生活情境,使数学问题生活化。

  本节课教师从课一开始就创设小明、晓红逛商店这一生活情境,而且这一情境始终贯穿整个教学过程中。使学生感到所学的内容不再是简单枯燥的数学,而是非常有趣、富有亲近感,感到生活中处处有数学,数学就在身边,他们被浓厚的生活气息所带动,兴致勃勃投入新课的学习中。

  2、自主探究、合作交流,让学生经历知识形成的过程。

  数学知识、思想、方法必须由学生在实践活动中理解、感悟、发展,而不是单纯依xx教师的讲解去获得。根据这一理念,教师在教学中从学生的认知规律和知识结构的实际出发,让他们通过有目的的观察、操作、交流、讨论,从直观到抽象,主动构建自己的认知结构。

  3、有机渗透思想品德教育,培养学生的爱国情感。

  培养学生的情感态度和价值观是每一位教师教学的重要目标之一,本节课在充分发掘教学内容,发展学生能力的基础上,介绍了我国古代数学家刘徽,使学生了解我国悠久灿烂的文化,增强学生的爱国情感,树立建设祖国的信念。

  总之,本课教学注重体现以学生发展为本的理念,重视学生的自主探究、创新精神和实践能力的培养。通过创设情境,把数学知识与生活实际结合起来,让学生在操作、交流、探究中去思考、体验和感悟,在实践中学习数学,在学习中体会到学习数学的乐趣,让学生在获取知识形成技能的同时,情感、态度、价值观都得到发展。

  小学六年级数学比教案 12

  教学目标:

  理解与掌握方程的意义,弄清方程和等式两个概念的关系。

  能力目标:

  培养学生认真观察、思考分析问题的能力。

  情感目标:

  激发学生求知欲和好奇心,感受数学探索的乐趣,体会“生活中处处蕴涵数学知识”;渗透数学来源于实际生活辩证唯物主义思想。

  教学重点

  理解和方掌握程的意义,会用方程的意义去判断一个式子是否是方程。

  教学难点:

  会用方程表示简单情境中的等量关系。

  教学准备:

  教学课件。

  教学流程:

  一、导入新课:

  教师:我们已经学习了用字母表示数,今天学习解简易方程。这部分知识非常重要,掌握了它会使我们多了一种解题方法,可以使某些较难的应用题化难为易,有助于提高我们分析问题和解决问题的能力。

  二、探究新知:

  (一)探究方程的意义:

  介绍天平:(课件出示天平图)

  天平实验,引出方程:

  1、第一步,称出一只空杯子重100克;

  第二步,往杯子里倒人约X克水,使天平出现倾斜。

  第三步,增加100克砝码,发现了什么?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?(100+x>200)

  第四步,再增加100克砝码,天平往砝码这边倾斜。哪边重些?怎样用式子表示?(100+x<300)

  第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?(100+x=250)

  2、教师:①观察100+x=250:这是一个等式吗?这个等式有什么特点?

  ②像100+x=250这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?(方程)

  小结:像100+x=250这样的含有未知数的.等式,称为方程。

  3、深入探讨理解:

  ①根据方程的含义,方程应该具备哪些条件,

  ②方程与等式之间有什么关系,你能用集合图来表示吗?

  写方程,加深对方程的认识:

  三、练习巩固:

  1、完成课本第54页做一做。在是方程的式子后面打上“√”。

  判断并说胡理由。通过交流使学生明确判断一个式子是不是方程,一看是不是等式,二看有没有未知数。

  2、判断,对的在括号里打√,错的打×。

  (1)等式都是方程,方程都是等式。()

  (2)含有未知数的式子叫方程。()

  (3)不是方程。()

  3、用方程表示下面的等量关系。

  (1)加上35等于91。(2)的3倍等于57。

  (3)减31的差是86。(4)7.8除以等于1.3。

  4、先说出下面题目中的数量间的相等关系,然后用方程表示出各题中数量间的相等关系。

  (1)文具店原有乒乓球40筒,卖出χ筒,还剩18筒。

  (2)某班有男生23人,女生χ人,共有50人。

  (3)小红买了5支铅笔,每支χ元,共付9元。

  (4)一头大象重5.1吨,一头牛重χ吨,这头牛比大象轻4.75吨。

  (5)甲地距乙地S千米,一辆汽车以每小时42千米的速度从甲地开往乙地,12小时到达。

  5、开放题:妈妈生日到了,小明想用12元零花钱为妈妈买几枝康乃馨,康乃馨每枝X元,他的钱如果买4枝则多3.6元,如果买6枝则少0.6元。根据题目提供的信息,选择有用的条件,你能列几个方程?(同桌议一议)

  四、课堂总结:

  教师:想一想,这节课学习了什么?你有哪些收获?

  课后反思:

  学生对什么是方程都有所了解,本节课是成功的。

  小学六年级数学比教案 13

  教学目标:

  1、结合具体情境,理解方程的意义,会用方程表示简单的等量关系。

  2、借助天平让学生理解方程及等式的意义。

  3、感受方程与现实生活的密切联系,唤起学生保护珍稀动物的意识。

  教学过程:

  一、 创设情境,激趣导入。

  谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示)

  我们应该保护这些濒临灭绝的珍稀动物,今天这节课,就以三种动物为话题,来研究其中的数学问题。

  二、合作探究,获取新知。

  (一)理解等式的意义。

  找出白鳍豚这组资料的等量关系,用字母表示。

  1、 师:我们先来看白鳍豚的这组资料,你从中发现了那些信息?

  1980年比2004年多300只,这句话中有几个数量?你能用一个式子表示出这三个数量之间的关系吗?让学生在练习本上写一写,进行板书。

  1980年只数—2004年只数=300只

  1980年只数—300只=2004年只数

  2004年只数+300只=1980年只数

  2、请同学们根据这三个数量中的已知数和未知数,用含有字母的式子表示出2004年只数+300只=1980年只数这个数量关系,小组进行讨论、交流。(教师进行巡视,参与讨论。)

  3、分析a+300=400,等号左边表示1980年只数,等号右边也是1980年的只数,像这样表示左右两边相等的式子,我们通常简称为等式。(板书:等式)

  4、借助天平来研究等式。

  (出示天平)你对天平了解多少?谁给大家介绍一下?

  师:你观察的真仔细,天平是一种用来称量物体质量比较精密的.仪器,当指针指在标尺的中央,天平就平衡了。

  师:如果左盘放10克砝码,右盘放20克砝码,天平会平衡吗?怎样用式子表示这种关系?(10<20)如何才能平衡呢?(左再放一个10克的砝码)

  师:出示天平:左20克和x克,右50克,你能用一个等式表示天平左右两边的关系吗?(20+x=50)

  师:我们知道一个等式可以表示出天平平衡时左右两边相等的关系,那在天平如何表示出x+300=400这个数量关系吗?(出示天平)

  (二)理解方程的意义。

  1、 找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。

  师:继续看大熊猫的资料,你获得了哪些信息?根据这些信息,小组讨论以下三个问题:

  (1) 找出人工养殖的只数与野生的只数的关系,用文字表示出来。

  (2) 用含有字母的等式表示出这个关系。

  (3) 在天平上表示出这个等式 。

  小组合作探讨,汇报交流,得出 :人工养殖的只数x10=野生只数

  10x=1600 ,1600÷x=10或1600÷10=x天平左盘放10个x只,右盘放1600

  只 。我们通过分析它们之间的等量关系得出了等式10x=1600.

  2、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。

  师:继续看东北虎的资料,你获得了哪些信息?根据这些信息,你能像刚才那样提出数学问题吗?小组讨论解决,交流汇报。

  (1)2003年只数×3+100=2010年的只数。

  (2) 3×+100=1000或1000-3×=100

  (3)天平左盘3x和100,右盘1000.

  我们通过分析它们之间的等量关系得出了等式3x+100=1000.

  3、 揭示方程的意义

  师:刚才我们研究出这么多的等式,下面给它们分分类,怎么分呢?(含字母,不含字母)

  我们把含有字母的等式,叫方程。这就是方程的意义。(板书:方程的意义)

  师:同学想一想x+5是方程吗?2+3=5是方程吗?说明理由。

  师:判断是不是方程,你觉得应符合什么条件?(含未知数,还必须是等式)

  师:请同学们再思考:式子、等式、方程,它们之间的关系是怎样的?

  三、巩固练习,加强应用。

  看来同学们已经掌握了今天所学的知识,下面老师来考考你。

  课件出示课本自主练习1,2,3,4。

  四、回顾反思,总结提升。

  通过这节课的学习,你有什么收获?

  小学六年级数学比教案 14

  教学目标:

  1、进一步理解小数的含义。

  2、学生认识单名数和复名数,在明确各种计量单位和单位间进率的基础上,会进行简单的名数改写。

  3、通过收集生活中的小数,体验生活中处处有数学。

  教学重点:

  使学生掌握单名数与复名数改写的方法,熟练的进行单名数与复名数改写。

  教学难点:

  熟练的进行时间单位单名数与复名数的改写。

  教学过程:

  一、引入新课

  复习引入:

  1千米=()米

  1千克=()克

  1米=()厘米

  1吨=()千克

  1时=()分

  1分= ()秒

  1平方米= ()平方分米

  1平方分米=()平方厘米

  在课前大家都收集了一些资料,把你收集到的生活中的小数说给小组同学听。

  找一组同学汇报他们收集的数据。

  二、新课学习

  1.名数

  老师也收集了一些生活中的小数,我们一起来看一看:课件出示。

  糖果的质量是0.5千克,小明的身高是1.35米,小红体操得分是9.25分,小丽的体温是38.5度。

  这些小数分别表示什么意思呢?你能说说自己收集的小数的含义吗?

  在计量长度、面积、重量、时间时,得到的数都带有单位名称,如1米30厘米,125厘米,32千克,30.4千克……等。通常把量得的.数和单位名称合起来叫做名数。

  观察同学们说出的这些名数,有什么相同点和不同点?

  相同点:都是测量的结果,有数有单位;

  不同点:有的名数只带有一个单位名称,有的名数带有两个或两个以上的单位名称。

  带有一个单位名称的名数,叫做单名数;带有两个或两个以上单位名称的叫做复名数。

  大家能举出一些单名数和复名数的例子吗?

  3分钟、7千米、6时15分、78平方米、4吨50千克、5米6分米、20平方厘米、9年、5千米60米。

  2.例1

  (1)80厘米=()米

  引导学生观察:从这道算式中你发现了什么?

  低级单位的名数能否转化为高级单位的名数呢?

  应该怎样改写?学生汇报:说一说是怎样想的?

  教师说明:因为100厘米=1米,80厘米=()米=0.80米,还可以这么算,80厘米=80÷100米=0.80米,其中的80÷100可以利用小数点移动的规律进行计算,缩小100倍也就是小数点向左移动2位,所以80÷100=0.80。

  说一说你更喜欢哪种方法?

  讨论:比较转化前后,什么变了,什么没变?

  单位名称变了,数的大小变了,实际的多少没变。

  让学生举出几个由低级单位转化为高级单位的例子。

  归纳方法:用低级单位的数除以进率,商就是高级单位的数,余数就是低级单位的数。

  练一练

  (2)教师出示1米45厘米=()米

  这道题与上面的题相比有什么不同?(是复名数改写成单名数)

  引导学生讨论交流:怎样将复名数改写成单名数?你是怎样想的?

  首先把1米45厘米写成1.

  米,因为1米等于1米,所以1米再加45厘米就等于1.45米。还可以这么想,1米45厘米是145厘米,145÷100=1.45米。

  练一练:

  4千米180米=()千米

  7米6厘米=()米

  3.例2

  0.95米=()厘米

  可以怎样想?由高级单位名称改定成低级单位名称时,要用高级单位的数乘以进率,再加上低级单位的数。

  想一想:1.32米=()厘米

  可以这么想:1.32米=1米+0.32米=100厘米+32厘米=132厘米,还可以这么算:1.32米=1.32×100厘米=132厘米。

  三、巩固练习

  1、直接写出得数。

  0.45×10=

  1.6×100=

  0.056×1000=

  40.5÷100=

  7.8÷1000=

  0.7÷10=

  3.06÷10=

  3.06÷10=

  2、小刚检查调查表时发现了许多错误,你能帮忙把错误改正过来吗?

  张佳佳:

  体重 3.85千克

  身高 14.3米

  早晨喝 0.005千克牛奶。

  四、课堂总结

  1、这节课的学习内容是什么?

  2、通过这节课的学习你有什么收获和体会?

  3、还有什么疑问?

  小学六年级数学比教案 15

  教学目标:

  要求学生在初步了解分数的基础上,对分数从感性认识上升到理性认识,理解分数的意义。

  通过练习加深同学们对分数的意义的理解。

  培养同学们分析问题、解决问题的能力。

  教学重点:

  理解单位1的含义。

  教学难点:

  理解单位1的含义。

  教学过程:

  (1)在初步了解分数的意义之后:

  请用分数表示2个红的圆。(1/2,2/4)

  讨论:同意哪种意见?

  为什么同样的两个红圆可以用两个不同的.分数表示?

  那么老师用4/8表示这两个圆,你认为可以吗?为什么?

  你们认为还可以用别的分数来表示吗?(6/12,8/16,12/24)

  这样的分数你们能多少个?(写不完)为什么?

  思考:为什么同样的两个圆可以用不同的分数来表示呢?

  (平均分的份数不同,两个圆所占的份数也不同,分数就不同了)

  (2)巩固练习

  A、1/2 1/3 1/4 1/6 1/12 1/24

  任选一个分数,并在图上用阴影部分表示出来。

  B、任选一副图表示出它的5/6。

  (3)课堂小结

  今天发言的同学请站起来。

  全班46人,发言的人数是全班人数的几分之几?

  还有一些同学没发言,请发言过的同学出题,让他们有机会发言。

  教学反思:

  在练习课的设计上,课本上的练习十分单调,将课外精选的一些练习安排在练习课上,取得了比较好的效果,学生对分数的意义有了一个比较完整的理解。

【小学六年级数学比教案】上海花千坊相关的文章:

小学数学六年级的教案07-02

小学数学六年级教案11-13

小学六年级教案数学教案01-05

小学数学六年级数学教案04-04

小学六年级数学经典教案05-11

小学数学六年级上册教案05-29

反思小学教案数学六年级07-23

小学数学六年级教案【热门】05-31

小学数学六年级教案【推荐】11-12

小学六年级数学比教案06-07