上海花千坊

勾股定理的逆定理

时间:2023-05-02 02:20:57 初中数学教案 我要投稿

勾股定理的逆定理

知识结构:

重点、难点分析

本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

教法建议:

本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

(1)让学生主动提出问题

利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

(2)让学生自己解决问题

判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

(3)通过实际问题的解决,培养学生的数学意识.

教学目标 :

1、知识目标:

(1)理解并会证明勾股定理的逆定理;

(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

(3)知道什么叫勾股数,记住一些觉见的勾股数.

2、能力目标:

(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过知识的纵横迁移感受数学的辩证特征.

教学重点:勾股定理的逆定理及其应用

教学难点 :勾股定理的逆定理及其应用

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程 :

1、新课背景知识复习(投影)

勾股定理的内容

文字叙述(投影显示)

符号表述

图形(画在黑板上)

2、逆定理的获得

(1)让学生用文字语言将上述定理的逆命题表述出来

(2)学生自己证明

逆定理:如果三角形的三边长 有下面关系:

那么这个三角形是直角三角形

强调说明:(1)勾股定理及其逆定理的区别

勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

(2)判定直角三角形的方法:

①角为 、②垂直、③勾股定理的逆定理

2、  定理的应用(投影显示题目上)

例1 如果一个三角形的三边长分别为

则这三角形是直角三角形

证明:∵

∵∠C=

例2 已知:如图,四边形ABCD中,∠B= ,AB=3,BC=4,CD=12,AD=13求四边形ABCD的面积

解:连结AC

∵∠B= ,AB=3,BC=4

∴AC=5

∴∠ACD=

例3 如图,已知:CD⊥AB于D,且有

求证:△ACB为直角三角形

证明:∵CD⊥AB

又∵

∴△ABC为直角三角形

以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

4、课堂小结:

(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用.

5、布置作业 :

a、书面作业 P131#9

b、上交作业 :已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

求证:△DEF是等腰三角形

板书设计 :

探究活动

分别以直角三角形三边为直径作三个半圆,这三个半圆的面积之间有什么关系?为什么?

提示:设直角三角形边长分别为

则三个半圆面积分别为

勾股定理的逆定理

【勾股定理的逆定理】上海花千坊相关的文章:

勾股定理的逆定理数学教案02-10

初中数学《勾股定理的逆定理》教案11-05

初中数学《勾股定理的逆定理》说课稿(精选10篇)12-23

逆定理04-29

勾股定理证明04-29

勾股定理教案05-30

趣谈勾股定理05-02

怎么证明勾股定理04-29

【优选】勾股定理教案07-14

勾股定理的证明方法04-29