上海花千坊

数学教案:分数

时间:2023-02-05 17:29:49 数学教案 我要投稿

数学教案:分数

  作为一无名无私奉献的教育工作者,常常要写一份优秀的教案,教案有助于学生理解并掌握系统的知识。如何把教案做到重点突出呢?以下是小编为大家收集的数学教案:分数,欢迎大家分享。

数学教案:分数

数学教案:分数1

  教学内容:

  人教版课程标准实验教材小学数学五年级下册

  教学目标:

  1、让学生在分一分、画一画、写一写、折一折、涂一涂体验中理解单位”1”,感受什么是分数,进而理解分数的意义,培养学生实际操作能力和抽象概括能力。

  2、让学生在轻松和谐的氛围中主动参与、积极合作、充分体验,感受数学与生活的密切联系,激发学生学习数学的兴趣和树立学好数学的信心。

  教学重点:单位“1”和分数的意义的教学。

  教学难点:突破一个整体的教学。

  教学具:多媒体课件、纸片、一分米、方块、小棒、小刀、水彩笔。 教学过程:

  一、 激趣引入:

  师:板书数字1。这是几?表示什么?能具体说说可以表示1个什么吗? 学生回答(1个苹果、一张白纸、一根绳子、一个学校的全体学生??) 师:老师想问大家一个非常简单的问题,1+1=?(点击课件)可能等于1吗?(点击课件)

  师:一吨煤+一吨煤=一堆煤 (点击课件)

  7个苹果+8个苹果=? (点击课件)

  师:这个简单而又神奇的1有如此丰富的意义,老师可以给它加上引号,起名叫作单位“1”。

  师:取出学具袋,倒出其中的学具,分一分、说一说,哪些能用单位“1”表示?

  【设计意图:开门见山教学单位“1”,突出“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”,单刀直入式的导入无疑是本课亮点之一,不仅大大提高了教学效率,有效突破了教学难点,其分一分、说一说的教学设计为学生提供了丰富的体验,激发了学生的求知欲。】

  二、课题揭示

  师:板书“分”字,问这是什么字?

  师:分过东西吗?你是怎样分的,能举例说明吗?

  生:??

  师:他这样分叫做什么分?板书:平均分

  师:以前学过的数学知识中,什么和平均分有关?

  生:分数(板书)。

  师:你对分数了解有多少?

  生:??

  师:这节课我们进一步学习分数。板书课题:分数的意义

  让读课题后,问学生意义指什么?

  分数起源于分,分数在我们的生活中应用非常广泛。(点击课件介绍分数的产生)

  三、探索新知:

  (一)回顾旧知:

  师:用以前所学的分数的知识,分你手中的单位“1”,你能得到哪些分数?

  学生操作,组内交流,各组推荐汇报。以1/4为例说明。

  教师提醒学生注意倾听别人的意见,对不准确的地方要加以修正,尤其要强调“平均分”,尽量做到不要重复别人的发言内容。

  【设计意图:把学习的主动权真正交给了学生,教师将几种学具材料交给学生,让学生通过小组合作的方式操作用分数表示,既尊重了学生的已有知识储备,又在不知不觉中为新知的构建架设桥梁。】

  (二)、研究几分之一

  师:你们想研究别的分数吗?教师出示1/○

  师:这是分数吗?你会读吗?它有什么特别之处?

  师:请大家拿出12根小棒,分一分、说一说,看看可以有多少种不同

  方法来表示1/○ ?

  学生操作,小组讨论、交流,教师巡视,引导学生用不同的`方式表示。 学生汇报,教师板书1/2 →6根、1/3 →4根、1/4 →3根、1/6 →2根、1/12 →1根。

  师:你又发现了什么?

  师:同学们真了不起,发现了这么多知识!

  【设计意图:富有挑战性的问题犹如一枚枚石子投进蓄势已久的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作,足以让学生获得积极的、深层次的体验。】

  (三)、研究几分之几

  1、教师出示○/○

  师:猜猜看,老师想让你干什么?

  教师出示要求:

  分一分(选择合适的学具表示这个分数)

  画一画(用简单的图形来表示这个分数)

  折一折、涂一涂(选择合适的学具,用折叠、涂色的方法表示这个分数) 说一说(组内互相说说这个分数)

  学生动手操作、组内交流,教师巡视指导。

  2、各组推荐学生汇报??

  【设计意图:遵循小学生数学学习的心理规律,问题设计得精且极具开放性、挑战性,以丰富的操作实践刺激学生的多种感官,注重学生感性认识,学生真正在“做数学”。】

  四:阅读教材:

  1、师:关于分数的知识,以前我们学习过一些,在课前我们也通过自学课本、查阅资料、请教别人,你现在知道多少分数的知识,能告诉老师吗?

  学生回答??

  2、师:让我们看看数学书上专家是怎样说的?

  学生看书、圈划、摘读,组内交流。

  3、师:什么是分数单位?我们刚才研究了吗?3/5 的分数单位是什么?有几个? 7/12 、11/20 呢?

  【设计意图:注重对学生学习方法的熏陶。在设计时,注意到学生自我获取信息能力以及良好学习习惯的培养,让学生课前自学课本、查阅资料、请教别人,了解分数的有关知识,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为学生的终身发展打下坚实的基础。】

  五、 综合应用

  1、完成课本第62页做一做。

  2、填一填:

  (1)把一堆苹果平均分成5份,一份是这堆苹果的( )两份是这堆苹果的( )。

  (2)这两位同学是( )人数的几分之几?

  3、糖块游戏。

  拿走9块糖的1/3,拿走几块?为什么?再拿走剩下的1/3,拿走几块?为什么?再拿剩下糖的1/4,拿走几块?

  4、写分数游戏

  师:下面请同学们练习写分数,比一比谁写得规范好看?任务是8个。 学生在写分数的过程中教师突然叫停。

  师:数一数,你写了几个分数?你能用刚学的分数说一句话,让大家猜一猜你完成的情况吗?

  生:我写了??

  【设计意图:学以致用,在应用中赋予数学活力与灵性,让学生在生动活泼的数学学习活动感受到数学与生活的紧密联系。所谓“人人学有价值的数学”、“不同的人在数学上得到不同的发展。”】

  六、全课小结:

  师:对于分数的意义你还有什么不懂的可以提问。

  学生质疑,学生解答,教师补充。

  师:关于分数的知识你掌握的情况如何,你能用今天学习的分数的知识

  说一说吗?

  生:??

  本课设计特色:

  1、淡化形式,注重实质

  分数的意义对于小学生来讲是一个比较抽象的概念,本课设计淡化形式,注重实质,一切以学生的发展为本,以解决问题为中心,以引导学生发现问题、分析问题、解决问题的逻辑性来体现教学的严谨性。整节课教师都没有将“把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数”这句严密、枯燥、抽象的话语塞给学生,但是整节课彻头彻尾都紧扣“分数的意义”教学的重点和难点,苦心经营,匠心运作。

  2、源于生活,回归生活。

  小学生学习的数学应是生活中的数学,是学生“自己的数学”,同时数学又必须回归于生活,数学只有在生活中才能赋予活力与灵性。本课设计注意到数学的教与学紧密联系生活,帮助学生在生活中发现意义,注重现实体验,力避传统的“书本中学数学”,体现生活中教学相长的互动关系,大胆改革教材的例题呈现方式,“跳出教材教数学”。

  3、强调合作,知识增殖。

  本课设计做到把学习的主动权交给学生,多给学生思考和表现的机会,多些成功的体验,突出每个个体的作用,使每一个学生不仅对自己的学习负责,形成人人教我,我教人人,让学生在主动参与合作中完成任务,实现知识在交流中增殖,思维在交流中碰撞,情感在交流中融通。

  4、注重体验,培植兴趣。

  学生学习的不只是“文本课程”,而更是“体验课程”,“学生的数学学习内容应当是现实的、有趣的、富有挑战性的”。本课教学中的说一说、分一分、画一画、写一写、折一折、涂一涂为学生提供了高频率、多维度、深层面的体验,我们的学生在学习时感到了乐趣,体验到了成就感,激励他们进行更深入的学习与研究。

数学教案:分数2

  一、教学内容

  1.分数的初步认识(几分之一,几分之几,几分之一分数、同分母分数的大小比较)

  2.分数的简单计算

  二、教学目标

  1.能结合具体情境初步理解分数的意义。

  2.使学生初步认识几分之一和几分之几,会读、写简单的分数,知道分数各部分的名称,初步认识分数的大小。

  3.会计算简单的同分母分数的加、减法。

  三、编排特点

  1.提供生活情境和直观图示,使学生认识分数产生的必要性,理解分数的意义。

  2.设计实际操作活动,在活动中直观认识分数。

  使学生在积累大量感性材料的基础上,逐渐形成分数的正确表象。如让学生用纸折出1/4。用涂色的方法来比较分数大小。

  四、具体编排

  (一)分数的初步认识

  1.主题图

  从整数到分数是数概念的一次扩展,因此要利用学生熟悉的生活情境帮助学生认识分数。

  教材上提供了一个学生和教师在公园里玩耍、野餐的情境图,图中有许多分数的例子,如苹果一人一半,一个西瓜平均分成了8块,一个月饼平分成了两块,有几个小朋友在折纸,把长方形、正方形、圆形的纸平均分成若干份,喂鸽子的器皿平分成三格或四格,远处小朋友在搭积木,也有许多平均分的原型。通过以上素材,可以使学生看到生活中把一个物体平分成若干份的现象到处存在,认识到产生分数的必要性。

  教学这个主题图时,可以作为引入,等学生学会了分数的表示法以后,可以回过头来让学生表示一下图中的各种分数。

  2.例1(认识几分之一)

  把主题图中的平分月饼的情境图抽取出来,结合直观图,先出现学生用生活语言描述的“这块月饼我们一人一半”,小精灵把这种生活语言数学化,直接提出分数的意义:一半就是这块月饼的二分之一(读法),并给出写法。使学生明白二分之一中的“二”和“一”的含义。接下来,把这块月饼进一步平分,平分成四块,让学生根据1/2的'意义进行迁移类推,自己说出1/4的意义。

  然后教材直接说明像这样的数都是分数,这儿并没有对分数进行文字性的定义。教学时不要拔高要求。

  在本例中,学生结合具体情境,初步了解分数的意义:把一个物体平均分成若干份,每一份可用分数表示。教学时要强调平均分。

  3.例2(用不同的方式表示1/4,进一步巩固分数的意义)

  (1)要通过这个活动使学生明白,可以用不同的方式表示同一分数1/4,虽然正方形纸的折法不同,每一份的形状不同,但都是把这张纸平均分成4份(分数的意义相同),所以可以用同一分数表示。

  (2)要利用折法多样性,充分发挥学生的创造性,除了教材上的三种,还可以有很多种折法。

  4.例3(几分之一的大小比较)

  (1)比较大小的目的是为了巩固对分数意义的理解。

  (2)借助直观图让学生根据分数的意义比较几分之一的大小时要提醒学生注意,这里的整体1是相同的。然后,通过小精灵的提问“你发现了什么?”引导学生得出结论:当两个几分之一比较大小时,分的份数越多,每份越小,它所代表的分数越小。这也是为以后学习同分子分数的大小比较作铺垫的。

  5.例4(认识几分之几)

  可看成是例2活动的延伸,学生已经理解了几分之一中分子和分母的含义,再认识几分之几就比较容易了。教材中给出了2/4的含义,3/4和4/4让学生通过类推的方式自己写出来。

  6.例5(十分之几的认识)

  在学习了一般的几分之几以后,再出现一条1分米长的彩纸平均分成10份,让学生自行写出其中的若干份所表示的分数。本单元的分数分母一般都在10以内,这儿出现十分之几主要是为以后学习小数的认识作铺垫的。

  接下来,教材直接说明像几分之几这样的数也都是分数,使学生直观地理解把一个物体平均分成若干份,其中的一份或几份都可以用分数表示。

  7.分数各部分的名称

  教学时可以让学生讨论分数各部分名称所表示的含义,使学生认识到:把一个物体平均分成几份,分母就是几,表示这样的几份,分子就是几。

  8.例6(同分母分数的大小比较)

  (1)在这儿,比较同分母分数大小的目的也是为了巩固对分数意义的理解。

  (1)在这儿还不是抽象地比较两个分数大小,而是通过涂色,利用直观图形的大小比较来比较分数大小。然后可以引导学生总结出比较的方法:分母相同时,分子大的分数大。

  (2)第2小题出现6/6,也是为后面学习1减去几分之几做准备的。

  9.练习二十二

  第1题,涂法不唯一。

  第2题,重点是让学生理解分数的本质是平均分。

  第7题,要引导学生发现涂色部分与未涂色部分的两个分数的关系,为后面的分数加减法作铺垫。

  第9题,通过三个1/4相加与3/4大小的比较,为分数加法作铺垫。

  第11题,答案多样,可以是4/16,也可以是1/4。

  (二)分数的简单计算

  *教学分数加减法的目的主要是进一步巩固对分数意义的理解,同时也为以后正式学习分数加减法做必要的准备。

  1.例1(分数加法)

  (1)通过主题图中吃西瓜的的情境,帮助学生理解分数加法的意义,答案让学生自行填出。

  (2)通过直观和抽象两种方式让学生理解算理。

  A.通过直观图看到两块西瓜和一块西瓜合在一起是三块西瓜,分别用三个分数来表示,得到分数加法算式。(巩固对分数意义的理解)

  B.用说理的方式表示。

  2.例2(分数减法)

  编排特点同例1,只是更多地让学生自主探索。

  3.例3(1减去几分之几)

  前面相关练习中已有了一些铺垫,只要把1转化成分子、分母相同的分数,就划归为已学过的分数减法,学生学习起来不会太困难。

  4.练习二十三

  第5题,把钟面的刻度和分数联系起来,如果学生的层次较高,可以在教材习题的基础上增加60分之几的练习。最后一题,可以写出6/12,也可以看成1/2。

  第7、8题,从图上都不能直观地看出剩下的占整体的几分之几,要求学生抽象地运用分数的意义进行计算。第8题,计算时可以连减,也可以先把红色和蓝色加起来,再减。

  第9(2)题,要引导学生把两次对折转化为把绳子平均分成四份。

  五、教学建议

  要把握好教学要求。这儿只是初步认识分数,对于分数的定义,分数表示的确切含义,教材都不要求掌握。在学习分数的认识、大小比较和加减法时,都要借助于直观图来帮助学生理解,重点也不是为了学习分数大小比较和加减法的方法本身,而是巩固对分数意义的理解。

数学教案:分数3

  教学目标:

  1.经历探索分数的基本性质的过程,理解分数的基本性质。

  2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变得分数。

  3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  教学重点:

  探索和理解分数的基本性质

  教学难点:

  理解分数的基本性质,并能应用其解决一些简单问题。

  教具准备:

  圆、长方形纸片

  教学过程:

  一、找分数

  出示40的圆形图,画出阴影,提问:你可以用分数表示出阴影部分得面积吗?

  6/9和2/3表示有什么样的关系?

  折一折

  说一说这些分数有什么共同之处。

  归纳:分数的.分子和分母都乘或除以相同的数(0除外)分数的大小不变。

  二、尝试练习

  学生独立尝试填写,教师巡视指导,然后让学生交流自己的思考过程。

  三、巩固

  指导学生进行练习,并让学生说说是运用了分数的什么性质?

  练一练

  涂一涂,填一填。完成第1、2题。

  学生填写完要说说想法,重点说说分母由3变成了18要乘6,所以分子2也要乘6。

  完成练一练第3、4题。

  板书设计:

  找规律

  分数的分子和分母都乘以

  或除以相同的数(0除外),

  分数的大小不变

数学教案:分数4

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的.圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

数学教案:分数5

  教学内容

  苏教版义务教育教科书《数学》六年级上册第35~36页例6、练一练,第37~38页练习六第6~9题。

  教学目的要求:

  学会计算分数的连乘,知道分数连乘的简便算法和计算时约分的简便方法。培养学生应用知识的能力和计算能力,提高分数乘法计算的熟练程度。

  教学重点难点:

  分数连乘的简便算法和计算时约分的简便方法。

  教学过程:

  一、复习

  口算。题目略

  笔算

  问:分数乘法怎样计算?怎样约分计算比较简便?

  二、新课教学

  出示例6

  六年级同学为国庆晚会做绸花。一班做了135朵,二班做得朵数是一班的,三班做的'朵数是二班的。三班做了多少朵?

  学生读题,尝试画线段图。

  问:要求三班做了多少朵,要先算什么?

  学生列式。

  分步(朵)(朵)

  综合

  5、这样的乘法算式你能算吗?

  讨论计算过程

  问:有没有不同的算法?

  比较不同算法。

  问:两种算法各是怎样算的?

  你认为哪种算法比较简便?怎样计算比较简便?

  6、归纳方法。

  问:今天的分数乘法,和以前计算的分数乘法有什么不同?怎样算简便?

  7练习

  做练一练

  做后全班订正,交流算法。

  三、巩固练习。

  1、列式计算。

  ①与的积的21倍是多少?

  ②一个数是32的,这个数的是多少?

  2、长方体的长是米,宽是米,高是米,它的体积是多少立方米?

  练习六7

  学生独立完成后,集体订正。

  四、全课总结

  这节课学习了什么内容?分数连乘怎样算比较简便?

  五、作业:练习第6、8、9题

  板书设计:

数学教案:分数6

  教材分析

  《分数的意义》是在四年级学生已初步认识分数的基础上,让学生理解把一个物体,一个计量单位或一些物体平均分成若干份。表示其中的一份或几份的数就是分数的意义。重点培养学生的理解、认知、实践操作能力。

  知识目标:

  A、指导分数的产生

  B、在理解单位1的基础上,引导学生会说出分数的意义。

  C、知道每个分数中的分数单位。

  D、在实际生活中学会用分数表示的方法解决实际问题。

  学情分析

  在本节课中,教师不仅重视让学生掌握知识,并能十分重视学生对学习过程的体验和学习方法的渗透,重视学生的个性化思维的展示,让学生通过回忆想象、自学教材、学习交流、动手实践等数学学习活动来发现知识,感受数学问题的`探索性,促进学生学会学习

  教学目标

  1.知道分数是怎样产生的,理解掌握分数的意义。

  2.认识单位“1”,知道分数单位,使学生知道在实际生活中一个物体,一些物体,计量单位等都可以用单位“1”来表示。

  3.知道分数在人们实际生活中的作用,会用分数来解决生活中的实际问题。

  教学重点和难点

  理解掌握分数的意义,并在实际生活中会应用分数解决问题。

  教学过程

  一.导课

  1. 导入。

  2. 提问。

  3. 板书新课题《分数的意义》,齐读。

  二、新授

  1.出示例1:你能举例说明1/4的含义吗?结合生活实际用你喜欢的方式表示出来。(学生动手操作,折一折或画一画)

  2、学生自由讨论交流,概括分数的意义。

  3、找个别学生说,后师总,齐读。

  4、出示1/8 、2/3 、3/4 、7/10结合生活实际,学习单位1,说一说议一议。

  5、师总

  6、看图结合实际,说说哪些可以看做单位1。

  7、学习分数单位,过程(略)。

  8、学生举例说明:A、分数的意义,B、单位1,C、分数单位。讨论交流。

  三、反馈巩固练

  1、出示图(小黑板)学生看图完成练习

  2、拓展。

  3、复习分数单位。

  4、练习用分数表示涂色部分。

  5、举例生活实际说说分数。

  四、小结本课内容

  A、学生谈这节课的收获。

  B、师总。

  五、布置作业

  P63页 1、2、4题。

数学教案:分数7

  教学目标:

  1、经历探索异分母分数加减法计算方法的折纸操作与通分的活动过程,理解异分母分数加减法的算理,并能正确学会计算异分母分数的加减法。

  2、能正确地进行异分母分数加减法计算及解决有关的实际问题。

  3、培养良好的动手习惯,学会与人合作增进小组间的合作意识。

  教学重点:

  掌握异分母分数加减的方法。

  教学难点:

  理解先通分,再加减的算理。

  预习要点:

  异分母分数加减法计算方法。

  教学过程:

  一、复习导入

  1、给下面每组分数通分

  和 和

  回忆:什么是通分?通分时,用谁做公分母?

  2、计算下面各题

  通过练习,谁来说说同分母分数加减法的计算方法?

  小结

  (1)把分母不相同的'分数化成和原来分数相等、并且分母相同的分数,这个过程叫做通分。

  通分时,用几个分母的最小公倍数做公分母,这样计算最简便。

  (2)同分母分数加减法:分母不变,分子相加减。

  今天,我们就一起来学习跟分数加减法相关的新内容。

  二、探索新知

  1、课件出示例题,引导观察

  根据这一情境图,你能提出哪些数学问题?

  2、提出问题,列出算式

  (1)他俩一共用了这张纸的几分之几? +

  (2)小红比小明多用了这张纸的几分之几? -

  3、探索算法

  (1)估一估

  (2)让学生尝试探索计算方法

  (3)交流算法

  提问:为什么要将异分母变成同分母?

  (4)课件演示计算过程,理解算理

  4、即时练习

  3/4+5/8

  9/10-1/6

  5、归纳算法

  提问:怎样计算分母不同的分数加减法?

  课件出示计算方法及注意事项

  三、巩固练习

  1、课本试一试

  请学生先计算再说一说淘气和笑笑的算法有什么不同?

  2、数学小医生

  3、算一算

  2/3+1/8

  3/4-1/6

  先让学生独立计算,巡视进行针对性地指导

  四、总结

  1、通过本节课的学习,你学到了什么?

  2、你认为进行异分母分数加减运算要注意些什么?

  板书设计:

  异分母分数相加减,要先通分,化成同分母分数,再把它们相加减。计算结果能约分的,要约成最简分数。

  教学反思:

  1、通过本节课的学习,同学们知道了异分母分数加减法的方法。(先通分,再加减)。

  2、在本课中,主要是引导学生自己去探索方法,组织学生借助图形理解异分母分数相加减的算法,在探索与交流中完成了新知的学习,充分体现了以学生为主体的教学理念。

  3、应该注意的事在通分时为了计算简便,应选择两个分母的最小公倍数作为公分母。

数学教案:分数8

  课题 分数的再认识

  计划学时 2

  教学目标

  知识目标

  1、在具体的情境中,进一步认识分数,理解分数的意义,发展学生的数感,五上第三单元教案1。

  2、结合具体的情境,体会“整体”与“部分”的关系,感受分数的相对性。 能力目标 培养学生观察、思考、操作、交流等能力。 情感目标 体会数学与生活的密切联系。 教学重点 突出分数意义的建构,使学生充分体会“整体”与“部分”的关系,深化对分数本质的理解。 教学难点 充分体会“整体”与“部分”的关系。 教学准备 多媒体 教学过程 教学环节 教师活动 学生活动 设计意图 活动一 同学们认识分数吗?你对分数都有哪些认识?谁能给老师说出几个分数?

  谁 能给老师讲讲,二分之一表示什么?

  1/2和1/3哪个大?

  出示大小不同的图形,现在你觉得哪个分数大?这又是为什么呢?

  同学们说得真好,看来分数的奥秘还挺多,这节课,我们就一起来继续探索分数的奥秘。 谈认识。

  指名说。

  自由说。

  观察,思考,回答。

  回顾对分数的初步认识,复习巩固分数的意义,让学生初步感知整体不同,同一个分数所对应数量也不同,从实际的情境中发现问题,提出问题,激发学生对再认识分数的探索欲望。 活动二 1、这里有三盒笔,你能从每一盒笔中分别拿出1/2吗?

  指导拿笔。

  你发现了什么?

  他们拿得对吗?

  他们三人都是拿全部水笔的1/2,拿出的水笔支数有的一样多,有的不一样多,这是为什么呢?

  小结:总支数不一样,同样是1/2,所表示的支却不一样。

  2、小明看了一本书的1/3,小军看了一本书的1/3,他们看的一样多吗?(出示图片)

  都是一本书的1/3 ,但表示的页数不一样多,为什么?怎么样的情况下,两本书的1/3是一样的?

  3、通过刚才拿水笔的游戏、观察讨论看书的情境,你发现了什么?

  小结:同一个分数,所对应的整体不一样,那么分数所表示具体的数量也不一样。 指名3人上前拿笔,其他同学注意观察。

  指名说。

  再请三名同学判断三位同学拿的都是对的。

  想一想,然后四人小组轻声交流一下。

  比较。

  讨论,指名汇报。

  让学生在具体的情境中,经历“提出问题---讨论---初步得出结论---验证---总结归纳结论”的一个体验数学的过程,从中体会整体不同,同一个分数所对应的数量也不同。 活动三 1、画一画:一个图形的1/4是“口”,请你画出这个图形。

  2、用分数表示各图中涂色部分。

  巡视指导,引导说清思考过程。

  3、在图中用颜色表示对应的分数。

  4、分别画出各图形的1/2。

  5、捐零花钱。 独立完成,展示不同答案,教案《五上第三单元教案1》。

  独立填后,交流。

  按要求涂色。

  画后交流:为什么大小不一样?

  组内交流,说清理由。 利用层层深入的巩固练习,引导学生对分数进行充分的再认识,利用生活中的情境,让学生初步体会分数整体与部分的辨证关系。充分调动学生的积极性,让每个学生都参与到学习中来。 总结 今天你有什么收获? 指名总结。 归纳知识要点和心得体会,突出学习重点,形成完整的知识框架。 板书设计 分数的再认识

  整体 拿出它的1/2 部分

  6枝 3枝

  8枝 4枝

  8枝 4枝

  整体不同,相同分数表示的数量也不同。 课题 分饼 计划学时 2 教学目标 知识目标 结合具体情境,使学生经历探索假分数与带分数的产生过程,理解“真分数”、“假分数”和“带分数”的意义,并能正确读写“假分数”、“带分数”,了解“假分数”、“带分数”的关系。 能力目标 培养学生观察、思考、交流等能力。 情感目标 体验数学与日常生活密切相关及学习数学的乐趣。 教学重点 结合具体情境,经历假分数与带分数的`产生过程,理解“真分数”和“带分数”的意义。 教学难点 能正确读写假分数、带分数,理解假分数、带分数的关系。 教学准备 多媒体 教学过程 教学环节 教师活动 学生活动 设计意图 活动一 出示教材情境图,并配上故事。

  3张一样大的饼平均分给4 个人,该怎么分?每人分到多少张饼呢?”猪八戒想请大家帮忙解决“分饼”这个问题,大家愿意帮这个忙吗? 观察,倾听。

  充分利用课本的情境图,创设一个学生喜欢的情境,既激发学生探索知识的欲望,又调动了学生解决问题的积极性。 活动二 1、请同学们拿出3张大小一样的圆形纸片代替3张饼,帮八戒分一分。

  讲清要求,巡视指导。

  哪个小组先来汇报你们的操作思考的过程?

  显示教材的分法。

  哪个小组刚才没有想到有这样的两种方法的,请动手再尝试一下刚才介绍的方法。

  2、下午化缘的时候,猪八戒更卖力了,到了傍晚时分,猪八戒已化缘到9张饼,他高兴地往回走,走着走着,他突然又想到了一个问题:“9张饼平均分给4 个人,每人又分到多少张饼呢?”八戒想了想,用刚才你们教他的方法,不一会儿就解决了这个问题。

  同学们,你们能猜出猪八戒是用什么方法解决这个问题的吗?

  哪个小组的同学愿意把你的分法让大家分享一下。

  2张又 张,用分数怎么表示呢?先写整数2,再写分数 ,分数紧挨着整数,分数线要对齐整数中间,合起来就是2 ,读作:二又四分之一。

  现在请同学们先齐读两遍,然后再写一写,看谁写得又快又美观。

  3、我们帮猪八戒解决了两个分饼的问题,得到了这些分数,观察一下分数的各部分,它们有什么特点呢?与1相比,哪个大?把你的发现与同学们交流一下。

  4、小结:谁来举例说说还有哪些假分数和带分数? 以小组为单位。分法先在小组里说一说。选择自己喜欢的方法动手分一分。

  汇报时上台演示,边做边说

  观察,记忆,理解。

  动手操作。

  可以利用手中的圆片,通过剪、拼、画等方法来验证一下,同时在小组内说一说你的想法和验证的结果。

  倾听,记忆。

  读,写。

  讨论,了解特点。

  随便说。 让学生通过想一想、说一说、剪一剪、分一分,在活动中感知数学,体验数学,体现学习的自主性和主体性,用不同方法的演示,认识分数的产生过程,并为下一个实践操作活动作好铺垫。通过引导学生观察、发现,交流、举例,结合情境理解真分数、假分数和带分数的特点,使学生印象更深刻。 活动三 1、 找朋友

  出示几个分数。

  2、用假分数和带分数分别表示各图中的阴影部分。

  3、以7为分母,写分数。

  4、看图,填假分数和带分数。 判断真分数,假分数,带分数。

  在书上完成,交流。

  独立写,汇报。

  完成在书上,同桌交流,再汇报。 练习结合情境,既注重基础,又促进学生的发展,生动有趣,活跃了课堂气氛。 总结 今天你有什么收获? 指名总结。 归纳知识要点和心得体会,突出学习重点,形成完整的知识框架。 板书设计 分饼 真分数:分子比分母小 真分数<1

  假分数:分子比分母大或分子和分母相等的分数 假分数≥1

  带分数:由整数部分和真分数部分合起来的分数 带分数>1

  带分数是假分数的另一种表示形式

数学教案:分数9

  教学目标

  1.使学生通过观察,初步理解简单的同分母分数加法的算理,并能正确计算.

  2.使学生初步知道一个分数的分子、分母相同时,这个分数就是l,从而加深对分数的'知识.

  3.培养学生抽象概括与观察类推的能力.

  教学重点

  1.理解同分母分数加法的算理.

  2.会计算简单的同分母分数加法.

  教学难点

  理解同分母分数加法的算理.

  教学过程

  一、铺垫孕伏.

  复习旧知.

  (1)用分数表示图中涂色部分(投影)

  问: 是几个 ? 是几个 ? 是几个 ?

  (2)填空

  是4个 是 是个 是个 .

  (3)口算并说明计算理由.

  30+280 56+6 139+20

  二、探究新知.

  1.导入 新授.

  这样的分数加法应该怎样计算呢?这节课我们就来学习.

  (板书:)

  2.教学例1.【演示课件简单的分数加、减法】

  (1)出示例1

  一张长方形纸,做纸花用去 ,做小旗用去 ,一共用去这张纸的几分之几?

  (2)分析数量关系,列出算式.

  教师板书:

  教师提问:这道题应该怎样想呢?(演示动画分数加法例1)

  是2个 , 是1个 ,2个 加上1个 是3个 ,就是 .因此

  (板书: )

  (3)计算并说出思考过程

  3.教学例2.【演示课件简单的分数加、减法】

  (1)(演示动画分数加法例2)

  提问:怎样列式?

  (板书: )

  思考: 得多少?你是怎么想的?

  (2)教师出示图片,板书

  (3)再让学生说 的思考过程.

  4.练习.

  (1)口答:

  (2)计算并说思考过程.

  提问:1用分数怎样表示?(可表示为 、 、 、 )

  小结:可以根据我们的需要写成分子、分母相同的任意分数.

数学教案:分数10

  教学目标

  1 、知识与技能:

  使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

  2、过程与方法:

  学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

  3 、情感态度与价值观:

  激发学生积极主动的情感状态,体验互相合作的乐趣。

  教学重难点

  1、教学重点:

  使学生理解分数的基本性质。

  2、教学难点:

  让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  教学工具

  课件

  教学过程

  一、故事情境引入

  1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的xx,老二分到了这块地的xx。老三分到了这块的xx。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

  2、120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

  120÷30= 4(120×3)÷(30×3)= 4(120÷10)÷(30÷10)= 4

  3、说一说:

  (1)商不变的'性质是什么?

  (2)分数与除法的关系是什么?

  4、让学生大胆猜测:

  在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?

  (随着学生的回答,教师板书课题:分数的基本性质。)

  二、新知探究

  1、动手操作,验证性质。

  (1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。

  你发现了什么?

  (2)观察比较后引导学生得出:

  它们的分子、分母各是按照什么规律变化的?

  (3)从左往右看:

  平均分的份数和表示的份数有什么变化?

  引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

  (4)从右往左看:

  引导学生观察明确:

  xx的分子、分母同时除以2,得到什么?

  板书:

  让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

  (5)引导学生概括出分数的基本性质,并与前面的猜想相回应。

  (6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)

  (7)小结:

  分数的分子、分母同时除以相同的数(0除外),分数的大小不变。这就叫做分数的基本性质。

  2、分数的基本性质与商不变的性质的比较。

  在除法里有商不变的性质,在分数里有分数的基本性质。

  想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?

  3、学习把分数化成指定分母而大小不变的分数。

  教学例2

  (一)把分数化成分母是12而大小不变的分数。

  (1)出示例2,帮助学生理解题意。

  (2)启发:要把化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?

  (3)让学生在书上填空,请一名学生口答。教师板书:

  (二)巩固提升

  1、下面算式对吗?如果有错,错在哪里?为什么会这样错。

  2、判断,并说明理由。

  (1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。(×)

  (2)把x的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。(√)

  (3)把x分子乘以3,分母除以3,分数的大小不变。(×)

  课后小结

  这节课我们学习了什么内容?你们有了什么收获呀?

  利用分数的基本性质时,应该明确一下几点:

  ①分子、分母进行的是同一种运算,只能是乘以或除以。

  ②分子、分母乘或除以的是相同的数。而且必须是同时运算。

  ③分子、分母同时乘或除以的数不能使0。

  ④分数的大小是不变的。

  板书

  分数的基本性质。

  分数的分子和分母同时除以相同的数,分数的大小不变。

  分数的分子、分母同时除以相同的数(0除外),分数的大小不变。这就叫做分数的基本性质。

数学教案:分数11

  教学目的:

  1、理解分数的基本性质;

  2、初步掌握分数性质的应用;

  3、培养学生观察——探索——抽象——概括的能力;

  4、渗透事物是相互联系、发展变化的辩证唯物主义观点。

  教学重点:

  从相等的分数中看出变与不变,观察、发现、概括其中的规律。

  教学难点:

  形成对分数的基本性质的统一认知。

  教学准备:多媒体,自制演示教具。

  教学过程:

  一、激趣引新:

  1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。

  2、在下面的()中填上合适的数。

  1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

  同学们现在已经能用分数的知识来解决问题了。

  二、启发引导,探索新知。

  1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?

  通过图形的平移、旋转等方法看出三个班种植面积一样大。

  2.引导观察得出结论。

  (1)通过拼图得到1/2=2/4=4/8

  (2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?

  (3)引导思考探索变化规律:

  从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

  反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  3.共同讨论,引导学生抽象概括出分数的基本性质:

  (1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?

  (2)变化时同时乘或除以小数可以吗?

  (3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)

  归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

  4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的'性质)

  (1)练习在□中填上合适的数

  1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

  (2)你能把1÷2这个除法算式改写成分数形式?

  你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)

  5.组织练习

  (1)判断:

  1/5=1/5×3=1/5()

  5/6=5×2/6×3=10/18()

  8/12=8×4/12÷4=32/3()

  2/5=2+2/5+2=4/7()

  3/4=3÷0.5/4÷0.5()

  分数的分子和分母都乘或除以相同的数,分数的大小不变。()

  (2)画一画、填一填

  (3)填空

  1/2=1×()/2×()=6/()

  10/24=10○()/24○()=()/12

  15/60=()/203/()=9/12

  6/18=()/()=()/()(有多少种填法)

  6.通过练习在此性质中哪些是关键词?

  7.巩固练习(选择你喜欢的一题来做)

  (1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

  (2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

  三、课堂总结

  今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。

  四、课堂作业:练习十四第1——3题。

  板书设计:

  分数的基本性质

  1/2=1×2/2×2=2/4=2×2/4×2=4/8

  分数的分子和分母同时乘以一个不为0的数分数的大小不变

  4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  分数的分子和分母同时除以一个不为0的数分数的大小不变

  综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

数学教案:分数12

  教学目标:

  1、初步认识分数,能正确地读写分数,掌握分数各部分的名称。

  2、借助直观演示、操作、观察、概括,等方法,引导学生感受几分之一的形成过程。

  3、体验分数在生活中的应用,提高学习数学的兴趣。

  教学方法:

  观察分析合作探究法。

  教学重点:

  理解只有“平均分”才能产生分数。

  教学难点:

  使学生头脑中形成“几分之一”的表象。

  课前准备:

  多媒休、师生各准备长方形纸,正方形纸,圆形纸各3张,水彩笔1支。

  教学过程:

  一、创设情境,导入新课

  同学们,你们喜欢听西游记里的故事吗?

  有一天,唐僧师徒在去西天取经的路上,走得又饿又渴。这时刚好路过一个桃园地,“哇,好大的桃子呀!”八戒见了直流口水说:“师傅可以吃桃子吗?”唐僧说:“吃桃子可以,不过我得先考考你。”唐僧说:“有4个桃子,平均分给你和悟空,每人分几个?请写下这个数。”猪八戒很快就写下了这个数。唐僧又说:““有2个桃子,平均分给你和悟空,每人分几个?请写下这个数。”猪八戒想了想,又写下了这个数。唐僧见猪八戒回答得这么快就说:“很好,那么1个桃子,平均分给你和悟空,每人分几个?该怎么写?”这可把八戒难住了。

  同学们,你们知道每人分几个吗?半个桃子可以用什么数来表示呢?看来同学们想不出该用什么数来表示,没关系,今天老师特意请了一位新朋友来帮助大家解决这个难题。它就是——分数。这节课我们一起来研究分数的初步认识。(出示课题)

  二、观察操作,探求新知

  1、借助形象,认识。

  多媒体演示平均分月饼,问:请同学们注意观察老师把这个月饼怎样了?(切开了)两块月饼的大小怎样?(同样大)说明老师怎么分?(平均分)把一个月饼平均分成两份,每份是整个月饼的多少?(一半)一半是日常生活中的说法,用数学语言来说,是整个月饼的二分之一。(教师板书)短短的横线表示平均分,横线下面的2表示平均分成2份,横线上面的1表示1份,这个数读作二分之一。全班同学读一读这个数。(生读)这一块是这个月饼的二分之一,(指另一块)这一块是这个月饼的多少呢?

  现在谁能用一话把刚才分饼的过程说完整?(把一个饼平均分成两份,每份是它的二分之一。)这句话中你觉得哪些字词很重要?(学生各自发表见解,说出自己觉得重要的字词)教师先给予肯定:其实同学们说的那些字词都重要,那究竟哪些更重要呢?

  多媒体演示不平均分的圆。如果像这样分,每一块能不能用表示?(不能)可见这里能不能漏掉“平均”两个字?(不能)

  “每一份”是什么意思?(两份都是它的.)所以这里强调“每一份”。这句话中“它”是指谁?(这里的整个饼)老师从口袋中拿出一个比大屏幕上的饼小得多的真饼,问:能不能说这里的每一份是我手上的这个真饼的?(不能)可见这里的“它”字重不重要?(重要)能。

  请全班同学齐读。

  2、仔细观察,认识。

  多媒体演示平均分成三份的圆形。教师提问:这个圆形被平均分成几份?(3份)涂阴影的部分能不能用一个分数来表示?(教师板书)只有这一份是它的三分之一吗?(另外两份都可以表示它的)

  谁能用一句话说说表示什么意思?(把一个圆形平均分成三份,每一份是它的三分之一)“它”指的是谁?(这个圆形)

  3、动手操作,认识。

  刚才我们认识了三分之一,接下来还想认识什么分数?(教师板书)

  现在请你们拿出课前准备好的长方形、正方形、圆形纸。四人小组先研究研究,再分工合作,用不同形状的纸分别折出,并用水彩笔画出阴影。看哪一组的办法多。

  教师在黑板上展示学生的各种不同折法,请同学到台上当小老师评讲各种折法正确与否,并说出道理。讨论:为什么折法不同,但都能表示出?(不管怎样分,只要平均分成4份,每份就是它的四分之一。)

  4、自主学习,认识五分之一。

  我们已经认识了分数这个大家庭里的3位成员,还有许多分数想和我们交朋友,你们愿意和它们见面吗?下面请你们打开书X页,自学例4、例5。

  例4、

  (1)看书,填空。(多媒体出示。)

  (2)学生汇报,订正。

  (3)教师指阴影部分问:它为什么能用表示?

  例5、

  (1)请学生到台上当小老师讲解:把1分米线段平均分成10份,这一份是它的。(投影出示)

  (2)你们有没有问题要问这位小老师?

  学生的问题由学生回答。若学生提不出好的问题,老师可以对台上的同学提问。

  三、归纳认识,学写分数

  (1)、把一个月饼平均分成2份,每份是这个月饼的,把一个圆形平均分成3份,每一份就是这个圆的,把一个长方形平均分成4份,每份是这个长方形的,把一条线段平均分成10份,每份是这条线段的。通过这些例子,你发现了什么?(把哪个物体平均分成几份,每份就是那个物体的几分之一。)

  (2)、像……这样的数,都是分数。(指黑板上的分数)你知道分数各部分名称吗?请在__页上找答案。(请学生说,师板书)

  (3)今天学的分数都有什么共同的特点?(分子都是1。)今天我们所认识的分数是几分之一的分数。

  (4)写分数时我们先写什么?再写什么?最后写什么?(先写分数线,再写分母,最后写分子)下面就来写几个分数,看谁写得漂亮。(学生写完后一起读这三个分数)

  (1)十分之一(2)九分之一(3)分母是8分子是1的分数

  四、巩固练习,理解应用

  1、做一做第X题:哪个图里的涂色部分是,在()里划√。

  2、请你联系生活实际,从身边找一找分数。

数学教案:分数13

  教学目标:

  1、在涂一涂,算一算等活动中,探索并理解分数除法的意义。

  2、引导同学通过动手操作、探索分数除以整数的算理,归纳计算方法,并能根据题目特点灵活选用较合适的计算方法。

  3、能够运用分数除以整数的方法解决简单的实际问题。

  4、将计算与生活紧密结合,培养同学的数学应用意识。

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以和小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼平均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的.意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)

  引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/7。

  师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/71/2=2/7

数学教案:分数14

  教学目的:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。

  教学过程:

  一、复习。

  1、5个12是多少?

  用加法算:12+12+12+12+12

  用乘法算:12×5

  问:12×5算式的意义是什么?被乘数和乘数各表示什么?

  2、计算:

  问: 有什么特点?应该怎样计算?

  3、小结:

  (1) 整数乘法的意义,就是求几个相同加数的`和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。

  (2) 同分母分数加法计算法则是分子相加作分子,分母不变。

  二、新授

  教学例1。

  出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

  用加法算: (块)

  用乘法算: (块)

  问:这里为什么用乘法?乘数表示什么意思?

  得出:分数乘以整数的意义与整数乘法的意义相同,

  都是求几个相同的和的简便运算。学生齐读一遍。

  练习:说一说下面式子各表示什么意思?(做一做第3题。)

  问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)

  三、巩固练习。

  1.第2页做一做。

  2.练习一

数学教案:分数15

  教学目标

  1.使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的试题。

  2.使学生在探索整数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

  3.进一步感受数学学习的挑战性,体验成功的乐趣,培养学好数学的自信心。

  教 和 学 的. 过 程

  一、导入

  1.口算:

  38 3 45 4 95 6 413 2

  2.揭题:整数除以分数。

  二、教学例2

  1.提问:幼儿园李老师把4个同样大小的橙子分给小朋友,如果每人吃2个,可以分给几个小朋友?

  指名读题,并要求口头列式。

  问:为什么用42来计算?

  明确:要求分给几个人,就是把4个橙子按每2个一份进行平均分,看能分成几份。

  继续提问:如果每人吃1个,可以分给几个小朋友?

  学生各自列式计算,指名说说列式的依据。

  2.出示第(2)题,指名读题,口头列式。

  追问:解答这个问题,为什么也是用除法计算?

  明确:要求可以分给几个人,就是把4个橙子按每12 个分一份,看能分成几份。

  谈话:请大家观察这道算式,它和上节课学习的除法算式有什么不同?

  学生回答后揭题:整数除以分数

  3、出示挂图,请根据图的意思想一想:可以怎样计算412 ?

  先让学生分组讨论,再组织全班交流:

  把4个橙子每个分成12 一份,可分成几份?412 是几?

  板书:412 =42

  看到这个等式,你能想到什么?

  4、出示第(3)题。

  (1)学生读题,列式。

  (2)你能在图中分一分,再想出计算结果吗?

  三、教学例3

  1.出示题目,让学生读题列式。

  2.请根据每23 米剪一段23 ,在图上分一分,看看结果是多少。

  3.想一想:423 可以怎么算,为什么?

  4.归纳和总结:想一想,整数除以分数可以怎么算?

  四、练习

  1.做练一连第1题。

  先让学生各自在书上独立填写,再指名交流。

  课后记:通过本节课的学习学生能够经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的试题。使学生在探索整数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。进一步感受数学学习的挑战性,体验成功的乐趣,培养学好数学的自信心。

【数学教案:分数】上海花千坊相关的文章:

《真分数和假分数》数学教案02-07

数学教案:分数乘法02-17

《分数除法》数学教案02-06

数学教案:《分数的意义》02-06

《分数除法》数学教案12-12

数学教案:分数15篇02-05

数学教案:《分数的意义》15篇02-06

数学教案:分数的意义和性质02-04

《分数连加连减》数学教案08-26