- 相关推荐
四年级数学下册教案
作为一位兢兢业业的人民教师,有必要进行细致的教案准备工作,教案是教学活动的依据,有着重要的地位。那么应当如何写教案呢?以下是小编精心整理的四年级数学下册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
四年级数学下册教案1
第一单元 小数的认识和加减法
教学目标
小数的意义不能单纯依靠教师的讲解和学生的背诵结论获得,必须通过活动使学生获得体验。本环节教师组织学生亲自动手操作:折一折、涂一涂,先用分数表示,再用小数表示,让学生在体验中逐步理解小数的意义。
引导学生观察发现,学会总结,培养学生良好的学习习惯,教会学生学会学习。
活动一:量一量
解释与运用
活动二:量身高
鼓励学生用自己的话归纳小数比较大小的方法,并和原来的想法比较,加深对正确方法的理解
让学生独立练习,教师重点辅导学习有困难的孩子。
多层次的练习,加强学生的口头表达能力,能正确熟练的比较小数的大小
6、引导学生小结。
第六课时
教学内容
教学内容
歌手大赛
教学目标
1.结合具体情境,能正确进行小数加减混合运算;能解决简单的小数加减混合运算的实际问题。
2.结合问题情境,学会小数加减混合运算。
教学重点正确进行小数加减混合运算。
教学难点小数加减混合运算的顺序。
教学环节教学方法及学生活动设计个性调整
一、出示图形,让学生观察讨论
二、练一练
三、全课小结:
同学们,你们看过电视上的歌手大奖赛吗?请看大屏幕,这个“专业得分”是什么意思?“综合素质得分”又是什么意思?你们知道吗?
(出示)
1、你找到了哪些数学信息?
看到这些数学信息,你能提出什么数学问题?
2、板书:谁的`总分高?高多少?
估一估,谁的总分高一些?
要想算出准确的结果怎么办?
(引导学生认识:要通过算一算才知道。)
3、谁来说说你是如何解决这个问题的?
板书学生的不同的解法。
①8.65+0.40=9.05(分)
9.43-9.05=0.38(分)
②9.43-(8.65+0.40)
=9.43-9.05
=0.38(分)
4、通过以上的计算,你知道我们这节课的学习内容吗?先算什么,再算什么?为什么?与整数加减混合运算的顺序相比怎么样?
5、第17页“试一试”第1题。
比一比,看看谁的方法最简便
四年级数学下册教案2
教学内容
人教版小学数学四年级下册P17—18。
学习目标
1.理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2.经历探索加法交换律和加法结合律的过程,培养学生的概括推理能力。
3.获得成功的体验,增强对数学的兴趣和信心,形成独立思考和探究问题的意识习惯。
学习重点:
理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
学习难点:
经历探索加法交换律和加法结合律的过程,发现并概括出运算律。
学习准备
课件、学习单
学习过程
一、创设情境,提出问题。
1.师:暑假是外出旅游的大好时节,好多人都旅游去了,当然李叔叔也不例外,看他是怎么去的?课件出示:
生:骑自行车。
师:你们看的真准,再仔细看看,你从图中还了解到了哪些信息?
生1:李叔叔准备骑车旅行一周。
生2:李叔叔上午骑了40km,下午骑了56km。
2.师:根据了解到的信息你能提出什么问题?
生1:李叔叔今天一共骑了多少千米?
生2:李叔叔今天上午比下午少骑多少千米?
二.合作探究,解决问题。
(一)探究加法交换律
1.列式计算
师:今天我们选取“李叔叔今天一共骑了多少千米”来做我们的学习材料,要解决这个问题我们应该怎么列式?
生1:40+56(板书)
师:还可以怎样列式?
生2:56+40(板书)
师:它们之间可用什么符号连接?
生:等号。(师板书等号)
师:为什么可以用等号连接?
生1:因为它们的和都是96千米。
生2:因为它们都是求的李叔叔一天行的总路程。
2.课件出示:
123+377 Ο 377+123
1124+76 Ο 76+1124
师:这两道题,它们的算式之间的能用等号相连吗?请你算一算!
生:能
师:为什么?
生:因为它们的和都相等。
师板书:
3.师:观察这三个等式,你发现了什么吗?
生:两个数相加,交换加数的位置,和不变。
师:从刚才的发现中,你们会猜想到什么呢?
生:是否所有的加法算式两个加数交换位置和不变呢?
(板书:两个数相加,交换加数的位置,和不变?)
4.师:口说无凭,你打算怎样验证咱们的猜想?
生:我们可以再举几个例子来验证一下。
师:那请大家拿出本子来,举几个这样例子来验证看看!
(生独立举例验证)
5.师:谁来上台说说你是怎么举例验证的?
生:(百以内的加法、多位数的加法、小数加法……)
师:通过刚才这两位同学的举例,都能证明我们的发现是正确的。谁有没有发现交换加数位置和不相等的情况吗?
生:没有。
师:也就是说,我们举不出反例,那证明我们该刚才的发现是正确。
师:谁能够再一次总结一下我们刚才发现的这个规律?
生:两个数相加,交换加数的位置,和不变。
师:旁边的问号是不是可以擦掉了?!
师:这个规律,数学家们给它起了一个名字,叫做“加法交换律”
(板书加法交换律)
6.师:刚才同学们举了那么多的例子,这样的例子能举完吗?
生:举不完。
师:是啊,像这样的等式我们能写出很多很多来。
(师边说便在等式的下面板书“……”)
师:既然像这样的等式写不完,你能否开动你的脑筋,想办法用一个算式表示出所有的等式吗?试一试,把你的想法在本子上写出来。
(学生尝试)
7.师:谁来说一说你是用一个怎样的.算式表示加法交换律的?
生1:甲数+乙数=乙数+甲数。
生2:△+□=□+△
生3:a+b=b+a
师:这三位同学的方法能表示出所有的情况吗?
生:能。
师:这三种方法,你更欣赏哪一种?
生:第三种。
师:说说你的理由。
生:因为第三种更方便、更简洁。
师:其实咱们的数学家想到的式子,跟生3的想法不谋而合,也是a+b=b+a。
(师板书a+b=b+a)
师:你觉得a和b可以表示哪些数?
8.师:同学们现在回想一下,我们是怎样探索出“加法交换律”的,同桌互相交流一下。
生1:我们是先观察发现,再举例验证,最后是总结规律。
师:很简单明了,还有谁来说一说?
生2:我们第一步是观察发现,我观察这三个等式,发现了任意两个数相加,它们的和不变,第二步是举例验证,我们举了好多例子,证明我们是正确的,最后一步是总结规律,总结的规律是“两个数相加,交换加数的位置,和不变”。
师:说的好不好?把掌声送给他!
(板书:观察发现→举例验证→总结规律。)
9.师:我们刚才是通过观察发现,然后是举例验证,再总结规律,这是一种非常好的学习方法。刚才大家经历了一次像数学家一样做数学的过程,那你能不能用这种学习方法去探索其他的运算定律呢?
生:能。
(二)探究加法结合律
1.师:现在请大家自学<学习单一》,自学之前老师给大家提供了一个学习锦囊,谁愿意大声读一遍?
生:
一.观察发现。
仔细算出每一组题的结果,你发现了什么?
二.举例验证。
你能再举出几组这样的例子吗?
三.总结规律。
你能用符号表示这个运算定律吗?
2.师:下面就请大家按照自学锦囊上的提示自学,开始。
(生独立完成)
师:完成的同学同桌交流一下。
3.师:都完成好了吗?谁愿意到前面分享一下你的自学收获?
生:我发现第一组算式都等于288,第二组算式都等于273,第三组算式都等于507,它们都可以用等号来连接。
师:每一组题的两道算式的计算方法有什么不一样吗?
生1:前一道算式都是先算前两个数的和,再和第三个数相加,后一道都是先算后两个数的和,再和第一个数相加。
师:刚才这位同学分享了这么多自学的收获,那你还发现了什么?还其他的发现吗?
生:我还发现这三组题,后面的题都改变了运算顺序。
师:运算顺序改变了,那么什么没有变?
生:和不变。
师:还有没有什么不变?
生:数字的位置没变,只是运算顺序变了。
4.师:刚才通过这三组算式发现了一个非常重要的规律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。那这个规律对不对还需要我们怎么样?
生:举例验证。
师:那谁来说一说你举的例子?好,你来!
生1:(24+76)+28=24+(76+28)(师板书)
师:谁再来分享一下你举的例子?
生2( 8+7)+3=8+(7+3)
师:谁再来举一个?
生3:(325+178)+22=325+(178+22),他们都等于525.
5.师:谢谢大家的分享。刚才,我们大家进行了举例验证,你们验证我们发现的规律对不对?
生:对!
师:有没有举出反例的?
生:没有。
师:那由此可以说明,我们该发的规律是……
生:正确的!
师:下面请同学们把我们发现的规律齐读一边,预备,起!
生::三个数相加,先把前两个数相加,或者先把后两个数相加,和不变
师:刚才发现这个重要的规律,我们把它叫做加法结合律。
(板书:加法结合律)
6.师:这是我们发的第二个运算定律,那你能用符号表示加法结合律吗?
生:(a+b)+c=a+(b+c)。
7.师:今天这节课,我们采用观察发现、猜想验证、总结规律的学习方法,发现了两种的加法运算定律,现在你还有什么不懂得、想提出来供大家研究吗?
生:加法交换律和加法结合律有什么相同点和不同点?
师:这个问题很有研究的价值,下面就请大家小组内交流研究,开始!
(生小组交流,师巡视)
师:哪一位同学到前面来分享一下你们讨论的结果?
生1:我们小组发现的它们的相同点是都是加法,和不变;不同点是加法交换律的加数是两个数,加法结合律的加数是三个数。加法交换律是数字的位置变了,加法结合律是运算顺序变了。
师:你们同意吗?还有和这一组不一样的吗?
师:好的,看来其他组的同学的发现同他们是一样的,我们班的同学观察力和思考力非常强,那下面,我们就运用我们学会的本领来练一练,解决生活中的实际问题!
三、巩固练习,拓展提高。
1.下列等式各运用了什么运算定律?
2.你能( )中填上适当的数吗?
3.今天我和妈妈一起逛超市,看到体育用品柜台有下列物品:
4.小明在上课的时候,老师出了一道这样的题目:
四.课堂总结。
1.本节课你什么收获?还有什么疑问?
2.师:同学们今天的表现非常出色,用自己善于发现的眼睛和聪明的头脑找到了加法算式中的规律,认识并理解了加法交换律和加法结合律,并能初步应用。你看,数学家能总结出来的运算定律我们也能总结出来,我相信只要我们在以后的学习中勤动脑、多动手,一定可以把数学学得更棒!
五.板书设计
四年级数学下册教案3
教学目标
1.在已有的生活经验上体会数的意义,感受到数学就在身边.
2.培养学生仔细观察、认真思考自主探索的能力.
3.通过动手操作,使学生会数数、读数、写数,初步体会数序的含义.
教学重点
正确数出物体的个数.
教学难点
正确书写数字.
教具、学具
数字卡片、课件.
教学过程
一、创设情境.
(一)引入
教师谈话:开学这几天,你认识了几个新朋友?能给大家介绍介绍吗?
1.同学之间互相介召、互相说.
2.指名回答.
教师提问:有认识一位新朋友的吗?谁认识了两位新朋友?有更多的吗?
这2个新朋友是谁?
教师板书: 1 2 3 4 5 (根据学生所说的板书)
(点评:联系学生生活实际学习数学,是课程标准的一个基本要求.通过“介绍新朋友”的情节引入,使学生体会到数学就在我们的身边,激发了学生的学习欲望.)
教师谈话:有一位小朋友叫“淘气”,他也认识了一位新朋友“笑笑”.有一天,“淘气”
请“笑笑”到家里做客.
(二)出示主题图
教师提问
1.看到这幅图,你想说些什么?
2.他们在玩些什么玩具?请你数一数,说一说.引导学生说出图上的物体数量.
(学生:他们在玩玩具,有5个积木、4辆汽车、3个皮球等等)
(点评:创设情境,让学生不由自主的数数,从而感受到数字在生活中随处可见,应用广泛,
同时也激发学生数数、用数的积极性.)
二、尝试探索.
(一)教师提问
1.你是怎样知道这些物体的数量的?(数出来的)
2.你是怎样数的?(一个一个的数、两个两个的数)
(二)指名数一数.说一说.
1.小组讨论:你认为怎样数数比较好?为什么?
思考:如果有更多的物体,又可以怎样数数呢?
(三个三个的数、五个五个的'数、十个十个的数……)
2.小组合作:数出铅笔盒里文具的个数.(指名展示,全班交流.)
3.如果你想请你的新朋友到家里做客,你准备怎样做?
学生1:我准备拿2个洋娃娃请好朋友玩.
学生2: 我准备拿4辆小汽车请好朋友玩.
学生3: 我准备拿5把玩具请好朋友玩.
(点评:通过观察实物,使学生体会数数的方法,感悟出数物体的数量时要一一对应,为数更多物体数量进行渗透.同时发散了学生的思维,使学生进一步感知生活中处处有数学,从而对数学逐渐产生亲切感.)
(三)揭示课题
教师谈话:刚才同学们准备了那么多的玩具,你们真是一个好客的小主人.同时我也听出来了,你们说出了许多数量是1 、2、3、4、5的物体.这就是我们今天要研究的内容.
教师板书:玩具 (1、2、3、4、5)
(四)指导书写.
教师谈话:我们会数出数量是1、2、3、4、5的物体,这些数该怎么写呢?谁会写 1 ? 2怎么写?
(指名板书)
教师提问:你们觉得他们写的怎么样?那么怎样写才能写的又漂亮又规范呢?
出示田字格及示范字
教师提问:看到这些字你有什么感觉?
教师:让我们一起来练习怎么写的.(生描示范字,师巡视指导.)
比较:你认为哪儿写的比较好?还有什么不足之处?
(点评:先引导学生观察数的写法,有了认识之后再描,最后自己写,这样的过程实际上在不知不觉的演示过程当中学会了书写.)
(五)比较数序.
1.看图数数.
教师谈话:“淘气”和“笑笑”玩的高兴及了,妈妈给他们准备了一些水果.
出示水果图
教师提问:都有那些水果?各有多少个?你是怎么知道的?
教师明确:1、3、5叫单数,2、4叫双数.
2.比一比.
什么水果最多?什么最少?你是怎么知道的?
3.生活中你还在哪见过这些数字?它们有什么用?
(点评:通过观察实物,使学生感悟到数字之间的大小关系,同时与生活实际相联系,进一步增加学习的兴趣,从而感受到数学就在我们身边.)
4.数序
教师谈话:2个好朋友刚吃过水果,动画片开始了.
出示火车图
教师提问:他们在干什么?“淘气”说老虎在第一节,“笑笑”说熊猫排第一节,他们谁说的对?小松鼠在第几节?大象呢?
三、总结
说说这节课你最高兴的事是什么?
点评:
1.本节课,让学生在经历数数的过程当中,进一步体验、感悟一些数数的方法.教师在教学中力求创设各种有利于学生自主探索的学习情境,提供学生参与学习的各种机会,鼓励学生在生活中增强了应用意识,感受到了数学知识来源于生活,还可以应用于生活.
2.数学的学习不仅在课上、课下,也不应该局限于教师的“引”与学生的主动探索,还应该利用恰当时机进行拓展.如数数的方法,以及单数与双数的概念,教师巧妙的设计,把他们引入课堂,通过做游戏的形式,使学生感悟、理解,同时也为今后的加减法的学习打下了基础.
四年级数学下册教案4
教学目标:
1、认知目标:知道简便运算的基本思想方法是凑整,利用加法运算定律可使运算简便。
2、技能目标:会正确运用加法运算律,对某些算式进行简便计算。
3、情感目标:接纳并乐于运用运算律进行简便计算,通过综合运用运算定律,使学生感到自由。
教学准备:
教学过程:
一、故事导入:
数学家高斯小时候,老师出了这样的一道题目:l+2+3+…+99+100=()。同学们都埋头算了起来,高斯却没有,他仔细地观察了算式,认真地想了想,马上报出得数。他是怎么想的?你能算吗?为了彻底搞清这个问题,让我们从考察比较简单的问题人手。
二、新课教学:
1、教学例3:254+687+313
(1)师生竞赛,看谁算得快。
(2)通过比赛,请速度快的学生,说说计算过程。
可能有两种情况:
a、不用简便的方法计算,只是学生计算能力强、速度快。
问:有更简单的方法吗?
b.生答:254+687+313=254+(687+313)
问:你是怎样想到的?这样算为什么会比较快?
(1)揭示课题:
(2)学生小结:把能凑成整千、整百的数结合起来先算,可使运算简便。(板书:关键“凑整”方法:“用运算定律”)
(3)基本运用:用简便方法计算。
718+57+8257+62+138
让学生独立完成,说说为什么这样计算?
A、生共同归纳方法:碰到一个加法算式,先看一有没有能“凑整”的数,如有,再运用——加法运算律进行简便计算。
①观察——有没有能凑整的数。
②如无,按顺序计算或竖式计算。如有,用加法运算律计算。
2、凑整训练:
决定是否运用运算律,关键看题中有没有可凑整的数。因此要正确迅速地作出决定,必须加快我们分辨凑整数的`速度。
把左边和右边的数相加的和是整百、整千的用线连起来。
36283
1597253。
47164
317403
3、教学例4:27+56+173+44
(1)学生进行尝试练习。
(2)反馈——投影出示整个计算过程。
(3)请同学们当小老师,说说为什么可这样做?根据什么?
(4)小结:先凑整,再简算。
凑整中同时使用交换律、结合律,我们可以把加法式中的数任意调换位置,也可以按需要把任意两个数放在一起加。
三、自主训练
1、怎样简便怎样算。
77+255+45+23273+15+185+18
68+74+33+67125+21+33+48
(1)分组完成(每组一张玻璃片,中等生解答,投影校对)。
(2)说说为什么可以这样做?依据是什么?(指名说、同桌互说)
2、看算式直接写出得数:“练一练”3。
口答得数,说说依据和方法。
①发展训练:老师出给高斯的题目怎样算?
1+2+3+4+5+6+7……+99+100
=(1+100)+(2+99)+…十(50+51)
=101×50
=5050
四、课堂小结:
1、加法交换律、加法结合律在计算中有什么作用?关键是什么?
2、综合运用计算律进行计算,你有何感觉?
注意:当能熟练运用时,简算过程可写可不写。
五、课堂作业:《作业本》
四年级数学下册教案5
教学内容:
P5:例3 “做一做”
教学目标:
知识与技能:知道关于0的运算应该注意的问题。
过程与方法:体会0在四则运算中的地位和作用。
情感态度价值观:培养学生整理知识的`能力。
教学重难点:
0不能做除数及原因。
教具学具:
多媒体课件
教学过程
一、导入新课
口算引入( 快速口算)出示:
100+0= 0+568= 0×78= 0÷23= 128-128=
0÷76= 235+0= 99-0= 49-49= 0+319= 0×29=
二、探究新知
1、将上面的口算分类.根据分类的结果说一说关于0的运算都有哪些。
2、一个数与0相加;一个数减0;一个数与0相乘的结果分别是多少。
3、0除以一个数的结果是多少?
三、0为什么不能做除数(讨论)
0不能作除数。例如,5÷ 0不可能得到商,因为找不到一个数同0相乘得到5。0÷ 0不可能得到一个确定的商,因为任何数同0相乘都得0。
小结:归纳所有0的运算
一个数加上0,还得原数。被减数等于减数,差是0。
0除以一个非0的数,还得0。一个数和0相乘,仍得0。
四、课堂测评
1.计算
(1)36+0= (2)0+68= (3)0×68= (4)54-0=
(5)0÷28= (6)128-0= (7)0÷36= (8)25+0=
(9)99-0= (10)49-49= (11)0+39= (12)0×9=
五、归纳反思
这节课我们有什么收获。还有什么疑问。关于0的运算应该注意的
板书设计:
0的运算
一个数加0或减0得原数;
一个数乘0得0,
0除以一个非0的数还得0。
四年级数学下册教案6
教学目标:
(一)知识与技能
理解平均数的意义,初步学会简单的求平均数的方法。
(二)过程与方法
学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。
(三)情感态度和价值观
感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。
教学重点:
掌握求平均数的方法,“移多补少”“先合并再平分”的实际意义和应用。
教学难点:理解平均数在统计学上的意义,灵活运用平均数的相关知识解决简单的实际问题。
教学准备:多媒体课件
教学过程:
一、创设情境、生成问题
师:生活中有很多地方用到平均数,(播放例子)那什么是平均数呢?怎样求平均数呢?今天我们就来探索平均数的奥秘。(板书:平均数)
二、探索交流,解决问题
1、平均数的意义和求法。
师:读情境图,从图中知道了什么?你能根据统计图提出什么问题? (学生独立完成,小组交流,全班汇报)
生1:从情景图中可以读出小红、小兰、小亮、小明分别收集了14、12、11和15个塑料瓶。
生2:所解答的问题是平均每人收集了多少个。
师:你能解释“平均每人收集了多少个”的意思吗? (小组交流,全班汇报)
生:“平均每人收集了多少个”意思是把收集到的'这些塑料瓶按照人数进行平均分配。也就是把收集瓶子数量较多的转移给数量较少的,最后达成每人收集的个数同样多。
师:你能理解“同样多”是什么意思吗?
生:每人收集的个数一样。
师:那有什么方法能使每人收集的个数一样呢?
生:像这样,通过把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多。师:这种方法叫“移多补少”,得到的这个相等的数叫做这几个数的平均数。
师:还有其他方法能知道平均数吗?
生:观察上图发现,还可以先求出塑料瓶的总数量,然后进行平均分配,可以求出平均每人收集的塑料瓶的个数。
师:请用算式表示出来。
生:(14+12+11+15)÷4
=52÷4
=13(个)
答:平均每人收集了13个。
师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,它是不是每个人真正收集的矿泉水瓶数量?引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。
小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。
刚刚我们初步学会了平均数的计算方法,接下来老师碰到了一个问题,你能帮我解决吗?
2、进一步强调平均数的意义和计算方法。(出示教材第91页情境图和统计表)
师:读图表,你能找出哪些数学信息?(学生独立完成,小组交流,全班汇报)
生1:已知第4小组男生队和女生队踢毽比赛成绩表。
生2:所求的问题是男、女两队,哪个队成绩好?(学生独立完成,小组交流,全班汇报)
师:怎样列式解答呢?(学生独立完成,小组交流,全班汇报)
生:男生队平均每人踢毽个数女生队平均每人踢毽个数
(19+15+16+20+15)÷5 (18+20+19+19)÷4
=85÷5 =76÷4
=17(个) =19(个)
17<19
答:女生队的成绩好些。
师:那我们来看看这两位小朋友做的。他们有什么不同的地方?你同意哪种方法?为什么呢?
生:如果比较两队的总成绩,有失公平,因为两队的人数不同,所以比较两队的平均成绩比较公平些。
师:对!在人数不等的情况下,用平均数表示各队的成绩更公平更好一些。
师:那么问题来了,你觉得这个平均数会比原来的数的最大数大吗?会比最小的数小吗?
三、巩固应用,内化提高
在生活中我们也会遇到很多用到平均数的地方。接下来老师来考考你们学习的如何。
四、作业
1、做一做第1题
2、判断题
(1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。 ( )内容来自闪亮儿童网
(2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。 ( )
(3)小明所在的1班学生平均身高1、4米,小强所在的2班平均身高1、5米。小明一定比小强矮。 ( )
3、做一做第2题
4、游泳池的平均水深是120厘米,小明身高140厘米,他在游泳池中学游泳,会不会有危险?为什么?
五、回顾整理反思提升
师:通过本课学习,你有哪些收获?
四年级数学下册教案7
学习内容:P61页例5
学习目标:通过合作探究,总结出小数点位置的移动引起小数大小的变化规律。
学习重难点: 小数点位置的移动引起小数大小的变化规律
一、【知识链接】
1、小数的性质是什么?
2、怎样比较小数的大小?
3、比较下列每组数的大小。
0.54○0.540 2.8○2.800 3.26○32.6 6.19○61.9
小结:一个小数在它的末尾添上0或者去掉0,小数的大小没有变,是因为没有移动小数点的位置;小数点的位置移动了,小数的大小也发生了变化。
二、【自主学习】
自学课本第61页例5,回答问题:
① 0.009米=( )毫米
② 0.09米=( )毫米
③ 0.9米=( )毫米
④ 9米=( )毫米
三、【合作探究】
1、从上往下观察,从0.009米变成0.09米,小数点向 移动了 位,即长度由 毫米变成了 毫米,长度 到原数的` 倍。因此,小数点向 移动一位,小数就 到原数的 倍。同理,比较 ①和③ ,小数点向 移动了 位,即长度由 毫米变成了 毫米,长度 到原数的 倍。比较 ①和④ ,小数点向 移动了 位,即长度由 毫米变成了 毫米,长度 到原数的 倍。
从下往上观察,小数点的位置依次向 移动一位、两位、三位,这个数就 到原数的 、 、 。
2、练习:4.5的小数点向左移动一位是( ),向右移动两位是( )
0.305的小数点向右移动( )是3.05,向左移动( )是0.0305,向( )移动( )是305,向( )移动( )是30.5。
3、小结:小数点移动要牢记:右移 ,左移 。移动一(二、三……)位是扩大(或缩小)10(100、1000……)倍,位数不够用 补位。
四、【拓展延伸】
原数扩大还是缩小由什么决定? 移动的位数决定什么?
五、【课堂小结】
小数点向右移动一位、两位、三位……,这个数就 到原数的 、 、 ……。小数点向左移动一位、两位、三位……,这个数就 到原数的 、 、 ……。
六、【课堂检测】
1、填空
(1)把6.2扩大( )倍是62。
(2)把59缩小到它的( )是0.59。
(3)0.28去掉小数点得( ),原数扩大了( )倍。
(4)73.21变为0.7321,原数就( )。
2、判断
(1)、0.8的小数点向右移三位,原来的数就缩小到了它的1/1000( )
(2)、3.69扩大1000倍是36.9。 ( )
(3)、把一个数缩小到它的1/10,就要把这个数的小数点向左移动一位。( )
四年级数学下册教案8
教学目标:
1.结合生活中的例子,理解精确数和近似数的含义。
2.掌握用“四舍五入”的方法求一个数的近似数,学会用“四舍五入”的方法省略“万”或“亿”后面的尾数,求出它的近似数。
3.引导学生观察、体验数学与生活的密切联系,培养学生主动探究的精神和应用数学的意识。
教学重点:能正确判断生活中的近似数和精确数,会用“四舍五入”的方法求一个数的近似数。
教学难点:灵活运用“四舍五入”的方法求一个数的近似数。
教学准备:课件
教学过程:
一、谈话引入
师:我今年三十五岁了,度过了一万多个日日夜夜。
想一想:在老师介绍自己的这两个数字中,你认为哪个数字描述得更精确?为什么?
引导学生畅所欲言,在学生交流的过程中教师进行实时指导,引导学生得出:三十五岁更精确,一万多个日日夜夜是个近似(大概、大约)的数。
导入:今天这节课我们就一起来学习和近似数有关的知识。(板书课题)
二、交流共享
(一)认识近似数
1.课件出示教材第21页例题6情境图。
2.初步感知。
让学生读一读两个情境中的信息,联系情境中的内容想一想:如果让你把划线的四个数字分一分,你想怎样分?为什么?
学生独立思考后,教师组织交流。
3.加深理解。
(1)思考:你知道上面哪些数是近似数吗?
教师在学生思考、交流的基础上明确:220万和1902万是近似数;生活中一些事物的数量,有时不需要用精确的数表示,而只用一个与它比较接近的数来表示,这样的数是近似数。
(2)让学生结合具体例子说说生活中的近似数。
(二)求一个数的近似数
1.课件出示教材第21页例题7“20xx年某市人口情况统计表”。
让学生观察表格中的数据,并读出这几个数。
2.借助直线理解找一个数的近似数的方法。
(1)教师出示一条直线:
38万 39万
(2)在直线上描出表示男性与女性人数的点。
提问:表示男性与女性人数的点大约在直线的什么位置?分别把它们描出来。
学生尝试在教材的直线上进行描数。
教师投影学生完成的结果:
38万 384204 386685 39万
(3)观察直线,探究找近似数的方法。
提问:观察直线上384204和386685这两个数,它们各接近多少万?
学生独立思考后,小组交流。教师巡视,了解学生的交流情况。
组织全班交流。
鼓励学生各抒己见,学生可能会有以下两种思考方法:
方法一:384204在385000的左边,接近38万;386685在385000的右边,接近39万。
方法二:384204千位上是4,比385000小,接近38万;386685千万位上是6,比385000大,接近39万。
教师对以上两种方法都应给予肯定。
3.介绍“四舍五入”的方法。
(1)教师介绍用“四舍五入”的方法求一个数的近似数。
用“四舍五入”的方法求一个数的近似数,要把这个数按要求保留到某一位,并把它后面的尾数省略。尾数的'最高位上的数如果是4或比4小,就把尾数的各位都改写成0;如果是5或比5大,要在尾数的前一位加1,再把尾数的各位改写成0。
(2)用“四舍五入”的方法求出男性和女性人数的近似数。
先让学生独立写,再组织汇报交流,交流时让学生说说是怎样运用“四舍五入”的方法来求它们的近似数的。
教师根据学生汇报板书:
384204≈380000
386685≈390000
4.完成教材第22页“试一试”。
(1)课件出示题目。
(2)让学生独立思考后,在小组内交流汇报。
(3)提问:怎样将一个数改写成用“万”或“亿”作单位的近似数?
学生交流讨论,教师归纳。
三、反馈完善
1.完成教材第22页“练一练”。
这道题是结合生活情境来区分精确数和近似数。其中,56785和1617是准确数,4600000000、2000000和3000000是近似数。
2.完成教材第24页“练习四”第5~10题。
学生独立完成后集体汇报。
四、反思总结
通过本课的学习,你有什么收获? 还有哪些疑问?
四年级数学下册教案9
教材分析:
本册教材的安排是通过一个生活中的常见的数学问题,先教学交换律,再教学结合律;先教学运算律的含义,再教学运算律的应用。这样安排有三个好处:首先是由易到难,便于教学。交换律的内容比结合律简单,学生对交换律的感性认识比结合律丰富,先教学比较容易的交换律,有利于引起学生探索的兴趣。其次是能提高教学效率。交换律的教学方法和学习活动可以迁移到结合律,迁移能促进学生主动学习。再次是符合认识规律。先理解运算律的含义,再应用运算律使一些计算简便,体现了发现规律是为了掌握和利用规律。学好加法交换律和结合律,不仅有利于提高学生的计算能力、解决实际问题的能力,而且也为以后学生学好乘法交换律、乘法结合律、乘法分配律打下坚实的学习基础。
学情分析:
本节课的学习之前,学生对加法的交换律已有了一些感性认识。例如:在10以内的加法中,学生看一个图可以列出两道加法算式。在以前的教学中,教材对加法结合律也作了一些于孕伏。例如:通过100以内加法中出现小括号的学习,对加法结合律也有了一些感性的认识。这些都是学习加法交换律和加法结合律的基础。对于四年级的小学生来说,运算定律的概括具有一定的抽象性。好在学生通过第一学段的学习,对加法和乘法的一些运算规律已经有所了解,这是搞好本单元教学的有利条件。在此基础上,本单元的教学应着重帮助学生把这些零散的感性认识上升为理性认识。
教学目标:
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、使学生经历探索加法交换律和结合律的过程,进行举例、观察、发现、验证并概括出运算定律。
3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:
理解、掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:
使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学过程:
教学环节设计意图教学预设
一、教师讲述故事《朝三暮四》,引导学生发现故事中的数学问题,初步感知加法交换律。
二、学生自主探究加法交换律
三、巩固练习
四、学习加法结合律
五、练习巩固
六、课堂小结
利用充满童趣的数学故事激发学生感知到加法交换律,并产生探究规律的兴趣。结合对加法交换律的初步感知,利用例题再次验证对交换律的猜想,并共同总结出加法交换律的字母表达方式。学生从自己所发现的一个数学现象中大胆猜想可能存在的规律,让学生经历由一般到特殊的研究过程。在尊重学生的认知的基础上为学生的自主探究创造机会。巩固学生对加法交换律理解,并学会灵活运用加法交换律解决问题。在探究加法交换律后,让学生根据探究经验和方法,自主发现、探究加法结合律并总结加法结合律的字母表示法。通过练习,整合加法交换律和结合律,能正确的判断两种运算定律并会灵活运用。(课件呈现)《朝三暮四》故事主题图师:同学们想听故事吗?老师今天给大家讲个《朝三暮四》的故事。古时候,有个老人养了一群猴子,这一天,老人对猴子说:“现在粮食不多了,要省着点吃。以后每天早上吃3颗栗子,晚上吃4颗栗子,怎么样?”猴子一听,怎么早上吃的比晚上还要少,不干,抗议!老人眼珠一转计上心头,马上改口说:“那么早上4颗,晚上3颗,好不好?”猴子一听早上多了一颗,自己占便宜了,这才开心的答应了。师:猴子占到便宜了吗?为什么?也就是什么没变,只是什么变了?
2、引出等式:师:早上吃3颗,板书3,晚上吃4颗,板书4,一共吃了3+4颗,也就是7颗。早上吃4颗,晚上吃3颗,一共吃4+3颗也是7颗,所以3+4=4+3。猴子占到便宜了吗?
3、猜想规律,引出课题师:观察等号两边的算式,你发现什么?(数不变,符号不变,和不变,位置交换)师:是不是任意两数相加,交换位置,和都不变呢?这只是我们的猜想,很多著名的理论、定律、公式最初都是由猜想开始的',猜想怎样才能变成真理呢,需要验证。怎样来验证呢?下面我们跟着李叔叔一起出去旅行一趟,相信不但可以锻炼身体,开阔视野,还能找到其中的奥秘呢。(课件演示:李叔叔骑车旅行的场景。)1、获得信息。师:从中你可以得到哪些信息?(学生同桌交流,然后全班汇报。)2、解决问题。师:能列式计算解决这个问题吗?(学生自己列式并口答。)根据学生回答板书:40+56=96(千米)56+40=96(千米)3、观察发现观察这两个算式,说说它们有什么联系?(两个加数相同,只是加数位置发生了变化,和不变,因此两个算式应该是相等的)根据学生回答板书:40+56=56+404、举例验证我们可以用举例子的方式来验证一下。你还能再举出几个这样的例子吗?自己在本上写几个。(学生在练习本上举例,教师巡视。指名板演)5、揭示定律。师:像这样各种类型的例子越多,验证的猜想也就越可靠。比如,我们还可以用生活中的事例来证明。同学们真聪明,想到了这么多的验证方法。给自己发现的规律起个名字,这句话中有“交换”两个字,我们就把这个定律叫做加法交换律。(板书)6、用自己喜欢的方式表示定律数学的魅力在于它的简洁和有效,数学简化了思维过程并使之更可靠!你能不能用最简单的字母或者符号表示加法交换律呢?(指名板演)a+b=b+a☆+○=○+☆同学们所写的公式都可以很好的表示加法交换律,我们比较常用的是a+b=b+a。1、运用加法交换律填上合适的数300+600=__+______+65=____+35b+_=_+_2、计算并验算325+5621、多媒体展示:李叔叔三天骑车的路程统计。
(1)找出信息解决问题。
问:你能解决李叔叔提出的问题吗?
学生独立完成后交流。88+104+96=192+96=288(千米)88+(104+96)=88+200=288(千米)师:第二道算式为什么要先算104+96呢?(后两个加数先相加,正好能凑成整百数。)
出示:(88+104)+96○88+(104+96)怎么填?
(2)你能再举几个这样的例子吗?
问:观察、比较这些算式,说一说你发现了什么秘密?(鼓励学生用自己的话来说。)
(3)揭示规律。
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这就是加法结合律。
(4)用字母表示。(学生独立完成,集体核对。)
(a+b)+c=a+(b+c)
(5)问:①用语言表达与用字母表示,哪一种更一目了然?
②这里的a、b、c可以表示哪些数?1、连一连83+31587+42+5864+(73+37)315+8364+73+3787+(42+58)
56+78+4478+(56+44)
2、观察每组中的两个算式,从中选择一道快速算出得数并说说你的理由。(1)(56+88)+1256+(88+12)(2)48+(75+25)(48+75)+25师:通过本节课的学习,你有什么收获?
四年级数学下册教案10
教学目标:
1、通过估计、实验、推算、交流等活动,让学生在具体的情境中体验一亿的大小,培养学生数感,并让学生感受数学与生活的密切联系;
2、初步获得解决问题的一些策略和方法,提高学生解决问题的能力;
3、让学生获得成功的体验,并受到勤俭节约、保护环境的思想教育。
教学重点:
让学生从不同的角度感受到一亿的大小,并能结合实际,以具体的事物来表达对一亿大小的感受。
教学难点:
培养学生解决问题的策略和方法,提高学生解决问题的能力。教具准备:学生准备:计算器、作业纸、数学书;
教师准备:
大米(100粒5份)、1千克大米一份、天平、卷尺、第三张表格图及下面的算式、课件。
教学过程:
一、创设问题情境,激发学习兴趣
二、引导学生经历估计——验证的过程,借助时间体验一亿有多大。
师:这是作业本,老师数一数1、2、3、4、5、6、7、8……照这样的速度数一亿本作业本,你估计要多长时间?(学生估计3小时、5小时、24小时……,师板书)
师:同学们估计得怎么样呢?我们可以通过实验来验证。
议一议:怎样能够得到数一亿本作业本的时间呢?
小组讨论。(数100本、50本、20本……作业本的时间,再推算数一亿本作业本的时间)
实验:每组推选一名代表数本子,数50本,老师记时。
数50本作业本大概是40~50秒,学生得出数100本作业本大概需要80秒~100秒的时间,从中取一个中间值大概90秒。
师:下面咱们就一起来推算一下数一亿本作业本所需要的时间。
(课件出示下表)本数时间(秒)90师生共同讨论,完成上表。
师:通过推算我们知道了数一亿本作业本的时间是90000000秒,这段时间长不长?这么长的时间用秒作单位来表示,显然不合适,你认为应该采用哪个时间单位?(年)怎样把9千万秒换算成多少年呢?(先把秒换算成分,再换算成时,最后换算成年)出示书上的算式: ( )÷60=( )分 ( )÷60=( )时 ( )÷24≈( )天 ( )÷365≈( )年(学计算,并保留整数。)
师:看了这个结果你有什么想法?(学生交流)
小结:
数一亿本作业本,有的同学估计要……,而实际结果却将近要3年的时间。在这三年里,我们有没有去掉吃饭时间,有没有去掉睡觉时间,也就是说不吃不喝不睡不停的数下去要3年哪,同学们,看了这个漫长的时间,你有什么感受?(一亿实在是太大了、数一亿本作业本的时间太长了……)
三、再次经历估计
验证的过程,借助长度体验一亿的`大小。
师:课间老师经常发现同学们喜欢手拉手一起玩,大家有没有想过如果一亿个小朋友手拉手站成一行,会有多长呢?(给学生一定的思考时间,不必回答)
师:凭空想象有一定的难度,同学们你们都去过头道羊岔吧,从学校到头道羊岔的公路长不长,老师告诉你,这条公路全长大概是1千米。想一想,一亿个小朋友手拉手的长度有没有从学校到头道羊岔的公路那么长呢?估计一下,大概有多少个这样的长度?(学生估计2个、4个、3000个……师板书)
小组讨论:怎样能得到一亿个小朋友手拉手的长度呢?(测量5个、10个、100个……小朋友手拉手的长度,推算出一亿个小朋友手拉手的长度。)
师:下面我们就一起来做一个实验,测量10个小朋友手拉手的长度,各组组长上来,每三个人一组负责测量,注意方法正确。
其他同学在走廊上手拉手站成一行,站得要又快又安静。
(实验收集数据。实验时注意,从第一个同学的手指尖量到第10个同学的手指尖,并推算出十个小朋友手拉手的长度,大概12米。)
师:刚才我们测量出10个小朋友手拉手的长度大概是12米,下面我们就可以进行推算了。
(出示表格,师生一起推算)
人数10100100010000100000……100000000长度(米)12120再算一算,这个长度有几个从学校到头道羊岔的公路长?
出示算式,学生用计算器进行计算:120000000÷1000=120000 (个)回过头来比较学生估计的数据与实际数据,再次感受一亿的大小。
四、总结方法,指导学法。
师:同学们,刚才我们通过什么方法知道了一亿是一个很大的数?(通过数一数、量一量的方法,先估计再推算,最后比较,了解了一亿有多大。)
师:你们会用这样的方法再次体验一亿的大小吗?五、拓展研究大数的方法,放手让学生借助重量体验一亿的大小。
师:观察一下你们的桌面,看一看我们还可以借助什么的研究来了解、感受一亿的大小?(用天平称100粒大米的重量,推算一亿粒大米的重量)学生说说怎样用上面学到的方法进行实验。
分组实验:
学生用天平称100粒大米的重量,得出大概是2.5克。小组合作推算出一亿粒大米的重量,并用千克作单位,与刚才的估计进行比较,进一。
四年级数学下册教案11
学习目标:
1、学习解形式为ax=b 、ax+b=c的方程,并解决简单实际问题。
2、继续渗透“猜想—验证”的思想方法,培养学生的初步的科研意识。
3、在解决问题的过程中,感受方程与现实生活的紧密联系,形成应用意识。
学习重点:
解形式为ax=b 、ax+b=c的方程的方法。
学习难点:
分析应用题的'等量关系,设未知数。
学习过程:
一、情境导入
师:上节课我们认识了很多珍稀动物,你还知道哪些珍稀动物呢?黑鹳这种动物大家见过吗?出示信息窗三,引导学生观察图片,阅读文字信息。你能提出什么问题?
生可能提出问题:我国现存黑鹳多少只?
师生共同分析数量之间的关系找等量关系,列出方程:3X=1500
二、自主探究-----发现数学问题
(一)师生探究ax=b这类方程的解法。
1、师:你会解这个方程吗?打开课本14页,看书完成导学案中的1.
2、学生独立研究这类方程的解法。(通过天平的原理探索等式的另一性质— —等式的两边同时乘同一个数或同时除以同一个不为0的数,等式仍然成立。)
3、生交流解这类方程的依据和方法。
解:设我国现存黑鹳X只?
3X=1500
3X÷3=1500÷3
X=500
答:我国现存黑鹳500只。
(二)师生探究ax+b=c 这类方程的解法。
1、师:20xx年繁育基地有多少只东北虎?(信息窗1)
2、先引导学生找出等量关系,根据“20xx年的只数×3+多的只数=20xx年的只数”,列出方程3x+100=1000。
学生看书完成导学案2.
3、学生尝试解方程,并把自己的解法与同伴交流:在解此方程的过程中首先把3X看作一个数,再运用等式的性质解方程。其次,要让学生明确在解方程的过程中运用了两次等式的性质。3X+100-100=1000-100这一步应用了“等式的两边同时减去同一个数,等式仍然成立”。“3X÷3=900÷3”这一步应用了“等式的两边同时除以同一个不为0的数,等式仍然成立”。
4、生讨论检验的方法。
5、概括解ax=b 、ax+b=c这类方程的依据。关注学生的归纳、概括水平。
三、课堂练习
1、P15页第1题、判断对错
师:你认为判断对错的依据是什么?
2、P15页第2题,哪个X的值是方程的解?
3、P15页3、4、列方程解应用题。(关注学生列方程是否会找等量关系及解方 程的依据)
四、巩固练习
完成导学案3
五、课堂总结
这节课你有什么收获?
六、课堂检测
出示导学案课堂检测。
四年级数学下册教案12
(一)教学目标
1.能体会分米、厘米、毫米的含义,建立相应的长度观念 。
2.记住这些单位之间的进率。
3.能估计一 些较短物体的长度。
4.会量较短物体的长度。
(二)教学重点与难点
1.教学重点:理解1分米、1厘米、1毫米的实际含义。
2.教学难点:建立分米、厘米、毫米的具体观念。
(三)教学准备
1.教具准备:实物投影仪、米尺、透明塑料尺、壹分硬币 、两支铅笔。
2.学具准备:每人学生尺一把、壹分硬币一枚、线一根、长铁钉一枚。
(四)教学过程
1.搭好桥梁。
(1)小朋友,想知道一个人有多高,黑板有多长,数学书本 又有多宽,可采用什么方法?(用尺量)
(2)你怎么想到要用尺量呢?(尺上有刻度)
(3)出示米尺:小朋友比划一下一米大约有多长?
(4)估计:黑板大约有多长?教师实际量一量,得黑板长3米多。
多的部分不到1米,究竟是多少?我们需要用比米小的单位来帮忙。
2.实践操作。
(1)认识厘米。
①实物投影仪上放上塑料尺,请学生观察,从“0”刻度线 到标有“1”刻度线之间的长度就是1厘米。(板书:厘米cm)
②学生在自己的尺上找1厘米的长度(手指宽,橡皮厚,1分 硬币的最大宽……),并用尺比量一量。
③量一量:铁钉有多长?(3cm)
④出示两支铅笔,一支10厘米,一支1厘米多一些,估计这两支铅笔大约有几个厘米长。
(2)认识分米。
①这支铅笔长10厘米,还可以叫做1分米长(板书:分米dm) ,所以1分米=()厘米。
②同上,学生在尺上找1分米的长度,找身边的物品长(宽) 大约是1分米的物品,可实际去量一量。(衬衣两纽扣之间、手掌宽……)
③在米尺上数一数,1米有几分米?也就是几个10厘米。1分米=10厘米,那么1米=()厘米。
④想一想:1米、1分米、1厘米有多长?
小游戏:伯;说我比划,即同桌1人说1米(或1分米、1厘米) ,另一人马上用手比划出来。
(3)认识毫米。
①还有一支铅笔为1厘米多一些,究竟是多少长呢?我们需要认识更小的'长度单位——毫米(板书:毫米一)
②1毫米用手难以比划·了,我们就用铅笔芯来点吧。
③长度是1毫米的物品很难找吧?(1分硬币的厚度,数学练习簿的厚度……)
④猜一猜,再在尺子-上数一数()毫米=1厘米,
3.归纳运用。
(1)今天我们学习了什么单位?(长度单位)(完成课题 )
你会给这些单位从大到小排排队吗?
你知道它们之间有什么关系吗?(进率)
(2)看看课本上是这样说的吗?(课本第85-86页)
(3)练一练:课本第87页“练一练”1、2、3。(先观察,估计一下各物品的长度,再测量)
(4)练一练:课本第87页“练一练”4、5、6。(其中6为同桌 合作题)
(5)拿出线,同桌合作量一量是多少长?(1米2分米,4厘米6 毫米)
四年级数学下册教案13
【教学内容】
北师大版小学数学四年级上册P94~96。
【教材分析】
《栽蒜苗(一)》是北师大版小学数学第七册第八单元的第一课时。首先,教材创设了“栽蒜苗”的实践活动,学生在15天的观察与记录中经历着数据收集的全过程,体验着数据收集的方法,感受着数学与生活的密切联系。其次,教材提供了学习活动的一些基本要求,即学生通过小组合作交流数据描述的方法与过程,感受学习统计的必要性,感悟统计图中一格表示多个单位的必要性和灵活性。最后,教材通过“试一试”与“练一练”的学习情景,促进学生学会读条形统计图,提高读图能力,发展统计观念。
【学情分析】
在第一学段,学生经历过统计的全过程,感受过“用一格表示一个单位”的统计方法,对象形统计图、条形统计图有了初步的感受与体验。在第二学段,当学生面对一个新的实践情境(如:“栽蒜苗”)时,他们自然会运用已学的知识去观察、记录蒜苗的生长情况,感受统计的必要性,当学生发现“格子不够画”的时候,自然会产生认知冲突,并尝试着去解决问题。课堂上,有效地组织学生进行交流,学生能比较快地感悟到“用一格表示多个单位”的必要性和灵活性。
【教学目标】
1. 通过实验记录的活动,体会到统计图表中一格表示多个单位的必要性和灵活性。
2. 理解条形统计图上的数据所表示的意义。
3. 会将实验中所得的数据用条形统计图表示。
4、经历收集、整理、分析数据的活动过程,体会条形统计图在实际生活中的应用。
【教学重、难点】
体会和理解条形统计图中一格表示多个单位,能把生活中的一些数据绘制成条形统计图。
【教学准备】
课件,方格纸,彩笔。
【教学过程】
一、引入课题
师:同学们,今天我们这节课来学习有关的统计知识。[板书:栽蒜苗(一)]
二、探索新知
1、 学习数据收集的方法。
师:同学们,怎样观察与记录呢?我们来看看天才小学的小朋友们是怎样做的。
2、 讨论数据描述的方法。
师:请同学们看第一小组蒜苗第十五天生长情况统计表。(学生汇报,集体交流)师:通过统计表同学们都知道了谁的蒜苗长得高,谁的蒜苗长得矮。为了形象地反 映这些蒜苗生长的情况,还有其他的方法吗? (画条形统计图)
3、 制作条形统计图
师:好,我们来在方格纸上涂蒜苗生长的条形。(教师给每个小组发两张15×9的方 格纸。)
生:老师,这张方格纸的一格表示1厘米,格子数不够涂怎么办?
师:这个问题提的.好,有没有办法解决格子数不够涂的问题呢?(再补充格子,用一格表示2厘米)
师:请同学们看第二小组蒜苗第十五天生长情况统计图。(交流信息,指出用一格表示3厘米)
师:刚才大家想出了用一格表示多个单位的好办法,它能解决格子不够用的问题。那么每张图上的每一格到底表示几个单位,还与所画条形的数据有关。如果数据很大,那么每一格所表示的单位就多,数据小,那么所表示的单位就小。
4、 讨论条形统计图的特点。
师:观察这些条形统计图,你从中发现了什么?
指名口答,通过交流,教师引导学生认识用条形统计图表示有关数量的关系比统计 表更加形象、具体,使人一目了然。
三、巩固练习
指导学生完成教材P91页“试一试”及P92页“练一练”
1、 试一试
这两道题目的练习主要是巩固对条形统计图的认识,使学生能结合现实的背景,说 出条形统计图中数据的实际意义。
先让学生说一说,在说得过程中体会从一小格表示的几个单位中理解条形所代表的实际数据。鼓励学生从条形统计图中尽可能多地获取信息。
2、练一练
先让学生在已确定每小格表示几个单位的方格纸上独立画条形统计图,再进行展示交流,让学生说一说是怎么样画条形统计图的,你能从图上获取哪些信息?
四、课堂小结
师:这节课认识的条形统计图与以前认识的条形统计图有什么不同?今天认识的条形统计图有什么优点?(让学生自由回答)
五、实践活动。
生活中有哪些事情可以通过数据来反应?请每个小组的同学自己选择一个主题,进行调查,并将调查的数据在附页2中制成条形统计图。
板书设计:
栽蒜苗(一)
条形统计图
2cm
3cm
一格表示 100个 多个单位
2人
形象直观一目了然
四年级数学下册教案14
一、说教材
本课时内容是在学生初步理解小数的意义,认识了小数的特征,并掌握了小数基本性质的基础上进行教学的。本课时内容的教学我从学生已有的生活经验出发,让学生在经历运动会排名次和购买体育用品等简单的生活实际情况来获取知识,从而提高学生对数学的学习兴趣。
教学目标:
1、知识技能目标:体验小数比较大小的策略的多样性,会比较简单小数的大小。
2、过程与方法目标:通过小组合作交流等活动,培养学生的数学应用意识,合作交流意识;培养学生有顺序地思考、讨论问题的能力。
3、情感态度目标:让学生感受数学与生活的紧密联系,激发学生探索数学的兴趣,获取成功的喜悦。
教学重难点:
探究并概括小数大小比较的一般方法。
二、说教法学法
情境教学,在例题的教学中创设符合学生生活情境的学习环境,引导学生投入到学习当中。
自主探索、合作交流的学习方法。学生们经通过观察、比较和交流等学习活动,自主探索小数大小的比较方法。
三、说教学过程
(一)情境导入
师:
1.六一儿童节就要到了,每年的六一学校都举行运动会,在运动会中你都参加了哪些体育项目?成绩怎样?(学生说)
2.老师收集了一张上次运动会的跳远成绩记录单,你们想不想看一看?
出示表格
姓名
小明
小红
小莉
小军
成绩
3.05米
2.84米
2.88米
2.93米
请同学们观察一下,从表格中你发现了哪些数学信息?根据这些信息你能提出哪些数学问题?同学们提出了这么多有价值的问题,今天我们就来研究:如果想给他们排出名次,想想应该怎么办?(比较他们的大小)怎么比较小数的.大小呢?这节课我们就来研究—小数的大小比较。(板书课题)
(二)自主探究合作学习
师:请同学们先独立思考,然后结合老师的要求将你的想法在小组里交流,看哪个小组想到的方法最多?我们先来看一下要求(出示要求:1.每个人在交流中都要说出自己的想法。2.每组推荐一名代表来汇报小组的想法,如果你认为小组代表说的不完整,本小组或其他小组可以给予补充。)
1.独立思考。
2.小组内汇报交流自己的想法。
(三)交流导思
1.学生汇报,反馈后问:这么多方法中,你最喜欢哪种方法?(暂不评价)
3.学生汇报并说比较方法。
4.总结。现在同学们能不能根据你的经验总结比较小数的大小的方法呢?
5.学生汇报后出示课件(比较小数的大小,先比较整数部分,整数部分的数大,这个数就大;如果整数部分相同,就比较十分位,十分位上的数大,这个数就大;若整数部分和十分位上的数都相同,就比较百分位,百分位上的数大,这个数就大;依此类推。)
(四)学以致用
1.按照惯例,运动会结束前学校要公布各班级的总成绩,你们想知道各班的成绩吗?我们一起来看一下。(课件出示)
年级
一年级
二年级
三年级
四年级
五年级
六年级
得分
93.45
92.84
95.84
92.80
97.50
96.85
师:结合小数大小比较的方法,我们来看一下上次运动会哪个班级表现出色,取得第一名,哪个班级的成绩最不理想,需要努力?
2.今年学校为了让同学们过一个丰富多彩的儿童节,运动会又增加了乒乓球和踢毽子比赛,你们想不想参加?你想参加哪个项目?老师去了几个体育用品店分别看了乒乓球拍和毽子的价格,你们来判断一下,去哪个体育用品店比较便宜?
四年级数学下册教案15
1、探索乘法的结合律要以解决问题策略的多样化为依托。下面请老师们见教材19页探索部分,教材是通过比较2个学生的不同解题方法,发现规律的。这里要说明的一点是:我们所说的解决问题策略的多样化是指群体策略的多样化,通过比较不同学生的不同策略,来发现其中的规律,而不是要求每个学生都必须会用不同的策略解决同一个问题。
2、猜测、举例、验证必不可少。与学习加法的结合律和交换律一样,乘法的结合律和交换律也要经过猜测、举例、验证的过程。这一点,前面已经说过,在教材的呈现形式上已有所渗透。
3、运算律的字母描述形式,可以尝试放手。在教学第一单元时,由于学生是第一次接触用字母表示加法运算律,教师需要进行适当的引导,但是本学习本单元时,由于学生已经有了用字母表式规律的经验,所以教师可尝试着放手,让学生自己去摸索,去表达。
4、关注学生已有的经验和认知基础,找准迁移点。学生有了第一单元学习加法结合律和加法交换律的经验,再来学习乘法结合律和乘法交换律,应该说难度不大。因此,教师要尽量放手,发挥其主观能动性,让学生自主地获取知识。在组织教学方面,由于本单元教材的'呈现形式及教法渗透方面,与上单元很相似,因此,可参照第一单元的教学流程去组织学习活动(比如说,猜想——举例——验证)
5、运算律的探索、理解、运用是本单元的教学重点,规律的记忆要在理解的基础上进行。数学课程标准对运算律的教学提出的目标是“探索和理解运算律,能应用运算律进行一些简便运算”从字面意义上看,标准对我们的要求,是学会探索方法,理解定律的意义。当然作为基础知识与技能的教学要求,也即规律的记忆,这是必要的,但要在理解的基础上进行。
6、重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。
【四年级数学下册教案】上海花千坊相关的文章:
四年级下册教案数学03-17
小学数学下册教案11-15
教案(四年级数学下册)12-17
四年级数学下册教案12-16
四年级下册数学的教案02-25
四年级下册的数学教案02-26
四年级苏教版数学下册教案02-20
四年级人教版数学下册教案02-20
数学四年级下册教案01-15