上海花千坊

轴对称图形教案

时间:2023-03-10 17:25:16 教案 我要投稿

轴对称图形教案15篇

  作为一位无私奉献的人民教师,时常需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案应该怎么写才好呢?下面是小编为大家整理的轴对称图形教案,欢迎大家借鉴与参考,希望对大家有所帮助。

轴对称图形教案15篇

轴对称图形教案1

  课题:1。1~1。4复习(初二上数学)B版

  课型:复习

  学习目标(学习重点):

  1.了解轴对称与轴对称图形,会准确画出轴对称 图形,找出对称轴、对称点等.

  2.能熟练应用轴对称的性质.

  3.复习线段的垂直平分线,角平分线的性质及推论,并能加以灵活运用.

  例题:

  例1.(1)下列说法中,正确的个数是( )

  ①轴对 称图形只有一条对称轴,②轴对称图形的对称轴是一条线段,③两个图形成轴对称,这两个图形是全等图形,④全等的两个图形一定成轴对称,⑤轴对称图形是指一个图形,而轴对称是指两个图形而言.

  A.1个 B.2个 C.3个 D.4个

  (2)如图在一个规格为6 ×12(即6×12个小正方形)的球台上,有两个小球 A,B。若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点( )

  A.P1 B.P2 C.P3 D.P4

  例2.作图题(1)作 出图1中△ABC关于直线l的对称图形;

  (2)如图2,∠BAC=60°,点P在边AC上,试用带刻度的直尺和量角器,在∠BAC内部找一点O,使点O到A、P的`距离相等,且到∠BAC的两边的距离相等.

  图1 图2

  例3.已知:如图,△ABC中,△ABC的外角平分线AD,交BC的垂直平分线于D点,DE⊥AB于点E,DF⊥AC于点F,

  (1)求证:BE=CF;

  (2 )若AB=15,AC=7,求AE的长.

  课后续助:

  1.点A和点B关于直线l对称 ,对直线l任意一点P,必有PA____PB

  2.对称图形________有一条对称轴,________有两条对称轴,_____ ___有四条对 称轴,_______有无数条对称轴。(各填上一个图形即可) .

  3.到三角形的三个顶点的距离相等的点是___________的交点.到三角形的三边的距离相等的点是___________的交点.

  4.如果△ A BC与△A/B/C/关于直线l对称,且∠A=500,∠B/=700,那么

  ∠C/ =___ _.

  5。如图,点P在∠AOB内,PM⊥OA于M,PN⊥OB于N,且PM=PN,连结OP,则OP是________________.依据是_______________ ________________.

  6.如图,AB=AC,AC的垂直平分线交BC于D,垂足为E,

  若AB=10,△ABD的周长为23,求△ABC的周长.

  7.如图,有一个三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形 ,使顶点C落在AB边上的点E处,折痕为BD,求△AED的周长.

  8.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,DE⊥BC于D,DE=DC.

  求证:BC=AB+AE.

  9.如图,在四边形ABCD中,BC>BA,AD=CD,

  BD平分∠ABC,试说明:∠A+∠C=180°.

轴对称图形教案2

  设计说明

  1.为学生提供丰富而典型的学习资源。

  小学低年级学生在学习抽象的几何概念时,需要借助直观形象的支持。因此本教学设计注重从学生熟悉的生活情境入手,通过观察与操作、生生交流和师生交流的方式进行教学,极大地丰富了学生学习的资源,同时又使学生感受到数学来源于生活,又服务于生活。

  2.注重操作活动与数学思考相结合。

  鉴于学生思维发展的规律和《数学课程标准》的要求,要使学生认识、理解图形的运动这样抽象的概念,必须结合现实生活的实例帮助学生认识、理解轴对称图形以及图形的平移和旋转,同时要注重操作与思考相结合。为了使学生获得充分的感性经验,本设计让学生在玩一玩、折一折、画一画、剪一剪的活动中理解轴对称图形,认识图形的平移及旋转现象;在学一学中感受其特征;在说一说中列举生活中的轴对称、平移和旋转现象;在做一做中不断深化体验。同时通过有效地提问做引导,便于在操作活动中落实教学目标。

  课前准备

  教师准备 PPT课件

  学生准备 长方形的纸 剪刀

  教学过程

  ⊙创设情境,引入新知

  1.引入:同学们,生活中有很多有趣的现象,只要你们有一双善于发现的眼睛,就能从中发现许多的知识。(课件出示教材28页主题图)请同学们仔细观察,你们能从图中发现哪些有趣的现象? (学生观察,自由回答)

  2.过渡:是啊,在游乐场里,空中飞舞着的蜻蜓风筝和蝴蝶风筝多漂亮呀!仔细观察可以发现,它们的左右两边是完全相同的,这里面就蕴涵着这节课我们要学习的内容。下面就让我们一起走进数学王国,去探索有趣的数学知识吧!

  设计意图:以学生熟悉的游乐场情境引入本节课的学习内容,使学生感受到数学与生活的密切联系。通过观察并说一说有效地打开了学生的知识储备,使学生尽快地进入到学习状态。

  ⊙探索交流,解决问题

  (一)认真观察,体验对称。

  1.观察图形,发现特点,认识对称现象。

  (1)课件出示教材29页树叶、蝴蝶、城门图片。引导学生从形状、花纹、大小等方面进行观察。边观察边思考:这些图形有什么特点?

  (2)组织学生交流汇报自己的发现。

  预设

  生1:树叶以中间叶脉的直线为界,左右两边的形状和大小都是相同的`。

  生2:蝴蝶以中间的直线为界,左右两边的形状和大小都是相同的。

  生3:城门图片以中间的直线为界,左右两边的形状和大小都是相同的。

  (3)根据同学们的汇报,组织学生讨论:这些图形的共同特点是什么?

  这些图形左右两边的形状和大小完全相同,也就是说如果沿图形中间所在的直线对折,折痕左右两边能够完全重合。

  (4)理解“对称”的含义。

  像图中的树叶、蝴蝶、城门这样,沿某一条直线对折后,左右两边能够完全重合,具有这种特征的物体或图形,就是对称的。

  2.列举生活中的对称现象。

  (1)生活中的对称现象还有很多,谁能举例说说?

  (2)欣赏对称图形。(课件出示:五角星、京剧脸谱、蜻蜓、雪花、剪纸等等)

  (二)动手操作,认识轴对称图形。

  1.课件出示教材29页例1,请同学们拿出课前准备的长方形纸,运用对称的知识,跟老师一起剪一件衣服。(同步完成课堂活动卡)

  (1)折一折:把这张长方形纸对折。

  (2)画一画:在对折后的纸上画线。

  (3)剪一剪:沿着刚才画的线剪一剪,剪后展开,会得到一件上衣的图形。

  2.剪其他图形。

  (1)选择松树、桃心、葫芦三种图形中的一种,自己动手剪一剪。

  (2)学生操作,集体评价。

轴对称图形教案3

  1.教学目标

  知识与技能:

  通过观察、实物操作,初步认识轴对称现象。能判断出哪些东西是对称的,并能找出它们的对称轴,学会画对称轴。

  过程与方法:

  培养学生自主探究,观察,比较和概括的能力,以及小组合作意识,引导学生在合作中交流,学习,互动。

  情感态度与价值观:

  通过情境画面的引入,渗透爱国教育和审美教育,激发学生学习的兴趣;也让学生感受到对称的美,学会欣赏数学美。

  2.教学重点/难点

  教学重点:认识轴对称图形的基本特征,准确判断生活中哪些物体是轴对称图形。 教学难点:能够找出轴对称图形的对称轴。

  3.教学用具

  课件

  4.标签

  教学过程

  1.谈话导入

  (1)同学们,生活中有很多有趣的现象,只要你有一双善于发现的眼睛,就能发现许多的知识。请同学们仔细观察这幅图(课件),你能从图中发现哪些有趣现象?

  (2)谁愿意来把你们组的发现说给大家庭?(学生在汇报时,教师尽量鼓励学生用自己的语言来表达,对学生一些不准确的表达无须过分强求,不必可以纠正。)

  (3)教学“对称”

  是啊,在游乐场里,空中飞舞着的蜻蜓风筝、蝴蝶风筝多漂亮呀,仔细观察可以发现,它们的左右两边是完全相同的,这里面就蕴含着这节课我们要学习的知识——对称。这节课我们就一起来探索跟对称有关的知识。

  2.探索新知

  (1)观察图形,发现特点。

  观察课本29页这些图形有什么共同特点?

  师:这些都是对称现象,说一说生活中还有哪些对称现象?

  引导学生从形状、花纹、大小、图案上观察。

  学生汇报交流自己的发现:图形两边都是一样的。

  (2)教师小结。

  这些图形的左右两边的形状和大小完全相同,也就是说如果沿图形中间的`一条直线对折后,这些图形的左右两边能够完全重合。

  (3)列举生活中的对称现象。

  师:生活中的对称现象还有很多,你能举例说说。

  学生自己说一说生活中的对称现象。

  (4)动手操作,认识轴对称图形。

  a、出示例1。

  引导学生明确剪对称图形的方法。

  要剪出一个对称图形,可以先把纸张进行对折再剪,最后沿对折的地方打开,这就形成了一个对称图形。

  教师小结:像这样剪出来的图形都是对称的,它们都是轴对称图形。

  动手操作,剪一件上衣请同学们拿出自己准备的一张白纸,你们能运用对称的知识用这张纸剪一件衣服吗?请大家跟老师一起来完成,好吗?

  折一折:把一张长方形的纸对折。

  画一画:在对折的纸上画线。

  剪一剪:沿着刚才画的线剪一剪,会剪出一件上衣的图案。

  b、剪其他图形。松树、桃心、葫芦。

  现在请同学们自己动手剪一剪,选择松树、桃心、葫芦三种图形中的一种,看谁既会动脑又会动手。

  教师引导:我们剪轴对称图形时,先要对折,那就是说,把你手上的图形对折,如果能完全重合,就是轴对称图形。

  学生操作,判断。指名上台演示,说说判断的理由。(展示时,教师注意让学生从不同的方向,横着、竖着、斜着的方向对折,感受不同角度进行判断。)

  (5)认识轴对称图形和对称轴。

  像上面这样剪出来的图形都是对称的,它们都是轴对称图形。图形中间的那条折痕所在的直线就是图形的对称轴。请看屏幕。我们在画对称轴时要画成一条虚线(课件演示)。

  (6)小结

  把一个图形对折后,如果两部分能够完全重合,我们就把这样的图形叫做轴对称图形,那条折痕所在的直线就叫做对称轴。

  3、课堂练习

  (1)下面这些图形中,哪些是轴对称图形?

  (2)下面的哪些图形是轴对称图形?

  (3)下面这些图形中,哪些是轴对称图形?试着画出它们的对称轴。

  4、拓展提升

  (1)下面的数字图案,哪些是轴对称的?

  (2)字母也可以写成轴对称图形

  (3)汉字也可以写成轴对称图形,举出

  (4)猜一猜:下面的字只出现一半,你能猜出它是什么字吗?

  (5)下面的图形分别是从哪张对折后的纸上剪下来的?连一连。

轴对称图形教案4

  优秀教案片段:

  (师利用多媒体课件出示一些轴对称图形)

  师:小朋友们,这些图形美吗?仔细观察这些图形,它们有 哪些特点?

  生:这些图形的两边都一样。

  生:这些图形都是对称的。

  师:你们想自身动手做一个漂亮的对称图形吗?

  生:想。

  师:那就抓紧时间拿出你们准备的彩纸和剪刀,开始行动吧!不会做的小朋友可以请老师和同学帮助。

  设计说明:课前我已了解到三年级同学在美术课时已学过制作对称图形。所以,我就先让同学自由创作,并充沛尊重同学的个性差别,对个别动手能力较差的同学适时给予协助引导,对于一些动手能力较强的同学,和时给予鼓励肯定。

  (剪图形活动结束)

  师:现在请小朋友们举起你剪好的图形,让老师看一看,大声说出它的名字。

  生:(苹果、松树、小房子、小花、蝴蝶、飞机、心形、图形……)

  师:请一位小朋友说一说你做的是什么图形?你是怎么做的?

  生:我做的是一个圆形,我先把一张纸对折,然后用量角器在上面画出半个圆形,再剪下来,打开,就成了一个完整的圆形了。

  师:你知道利用工具来做,真不简单,还有谁愿意说?

  生:我做的是一棵松树,我也是把一张纸对折,先在上面画出一棵松树的一半,然后剪下来,打开,就成了一棵完整的松树了。

  师:为什么要先把一张纸对折?

  生:因为假如不对折,剪出的图形两边就不一样大了。

  (仍有同学手高高举起)

  师:还有人想说呀?下面就请你们把剪好的图形在小组内交流展示,互相说一说自身是怎么做的?

  设计说明:展示作品时,同学学习兴趣高涨,通过相互之间的交流,使同学在做数学的过程中初步感知轴对称图形的.特征。

  师:(出示蝴蝶图形做示范)请小朋友们把你们剪好的图形像老师这样对折,看一看、比一比对折后两边的图形,你发现了什么?

  生:对折后,两边的图形重合了。

  师:(出示一片不对称的枫叶图形)老师这儿还有一个图形,现在我把它也对折,老师手中的图形对折后的情况和你手中的图形对折后的情况一样吗?

  生:不一样。

  师:哪些地方不一样?

  生:(指着老师手中的枫叶图形)

  这个图形对折后两边的图形不一样大,一边大,一边小。

  老师手中的图形对折后,两边的图形没有重合完,下边还多出来一局部。

  师:(趁机问)你们手中的图形对折后,是怎样重合的?

  生:全部重合完了。

  师:有没有多出来的局部?

  生:没有。

  师:有没有缺少的局部?

  生:没有。

  师:(指着同学的图形)这种重合就叫做完全重合。

  师:(利用蝴蝶图形再次演示)像这种,对折后两边能够完全重合的图形,我们就把它叫做轴对称图形。

  设计说明:我让同学充沛利用自身剪出的图形作为学具,指导同学亲自动手折一折,看一看,比一比,观察比较出两种图形对折后的不同情况,让每一位同学都主动参与,动手操作,亲身经历知识形成的过程,发现轴对称图形"对折后,两边完全重合"的特征。

  师:现在,请小朋友们打开你的轴对称图形,仔细观察图形的中间,你又发现了什么?

  生:(中间有1条线)

  师:这条线是怎么得来的?

  生:刚才我们对折的时候留下来的折痕。

  师:刚才我们对折的时候就是沿着这条折痕所在的直线怎么样的?

  生:对折的。

  师:假如我们不沿着这条直线对折会怎么样?

  生:两边的图形就不能完全重合了。

  师:这说明这条线怎么样?

  生:很重要。

  师:你能给这条线取个名字吗?

  生:中间线。

  师:为什么把它叫做中间线?说说你的理由好吗?

  生:因为这条线在这个图形的正中间,所以我把它叫做中间线。

  师:还有谁想说?

  生:对折线,因为这条线是我们对折后留下来的。

  生:重合线,因为沿着这条线对折两边的图形就完全重合了。

  师:小朋友们给这条线取的名字都非常有创意,想听数学小博士是怎么说的吗?

  (课件演示:一个图形沿一条直线对折后,两边的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫对称轴。)

  设计说明:在这一教学环节中,我再次引导同学亲身经历探索、发现知识的过程,体现同学的主体性,让同学根据自身的理解,给"这条线"取名字,培养同学的创新思维和空间想象能力,加深对"对称轴"的理解。在让同学通过动手操作,初步感知的基础上,配合课件动态出示"轴对称图形"的概念,使同学的认知结构逐步得到完善,由感性认识上升到理性认识。

轴对称图形教案5

  教学内容:

  北师大版三年级数学课本23-24页的相关内容。

  教学目标:

  1、知识与技能:通过观察和操作活动,初步认识轴对称图形。会直观判断轴对称图形,能用对折的方法找出轴对称图形的对称轴。

  2、过程与方法:通过学生动手操作等实践活动,培养学生的观察能力和想象能力。

  3、情感态度与价值观:在学生的学习活动中,让学生学会欣赏数学之美。

  教学重点:

  认识轴对称图形的基本特征,能画出轴对称图形的对称轴。

  教学难点:

  能直观判断出轴对称图形,能用折纸的方法找出对称轴;

  教学准备:

  课件、一些轴对称图形图片、纸和剪刀、长方形、正方形、圆形纸等。

  教学过程:

  一、巧设情境,激发好奇心。

  花园里有只可爱的蝴蝶在翩翩起舞。一天她遇见了小蜻蜓,对小蜻蜓说:我们是一家人。小蜻蜓就奇怪了,我是小蜻蜓,你是蝴蝶,怎么是一家人了。蝴蝶笑了笑说,在大自然里还有很多物体和我们是一家呢。

  二、欣赏图片,建立表象。

  1、这不,你瞧。蝴蝶找来了什么?

  课件出示:蝴蝶、枫树叶、七星瓢虫、蜻蜓、脸谱、交通标志、数字8、飞机、天平、一些字母等。这些图形漂亮吗?学生欣赏各种对称图形。

  2、引导观察图形,交流汇报

  刚才同学看到的这些图形在日常生活中还有很多很多,那么这些图形中你发现都有什么特征呢?把你的发现在小组内说一说。

  师:你发现了什么数学问题?

  生1:我发现他们都很美。

  生2:左右一样。上下?

  生3:我发现它们是对称的。

  师:你是怎么理解对称的?

  生3:对称就是左右两边是完全一样的`。

  3、教学板书对称

  (1)课题导入

  师:是啊,刚才我们看到的其实是生活中的轴对称图形的现象。今天老师和大家一起来研究数学上的轴对称图形。(板书课题) 刘元平三下《轴对称图形》教学设计 刘元平三下《轴对称图形》教学设计

  (2)结合剪纸作品,抽象概念

  师:谁能在最快的时间内剪出一个葫芦吗?

  学生自己操作创作。(先把纸对折后再剪)

轴对称图形教案6

  教学内容

  教科书第100~101页,练习二十六的第1~6题.

  教学目的

  使学生初步认识轴对称图形,知道轴对称的含义,能够找出轴对称图形的对称轴.

  教具、学具准备

  教师准备一些实物图、剪纸、剪刀,学生准备剪刀、方格作图纸、直尺.

  教学过程

  一、新课

  1.教学轴对称图形.

  教师出示教科书第100页上面的实物图和一些轴对称的剪纸,让学生观察它们有什么特点.使学生初步体会到这些实物图有“轴对称”的特点.

  然后教师和学生仿照教科书第100页中间的图形用纸剪一剪,让学生观察、讨论剪完的'图形有什么特征.

  教师指出:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形;折痕所在的这条直线叫做对称轴.

  2.做教科书第100页下面的“做一做”的题目.

  让学生通过观察进行判断,教师还可以再出示一些图形让学生观察.

  3.教学轴对称的几何图形.

  教师让学生拿出方格纸,按照教科书第101页上面的图画出这些图形,再剪下来折一折,判断这些图形是不是轴对称图形,并画出它们的对称轴.然后让学生观察在一个图形中有没有不止一条对称轴的.

  再让学生把轴对称图形和非轴对称图形进行比较,比如把等腰三角形和它左边的锐角三角形进行比较,使学生认识到等腰三角形是轴对称图形,它的两条腰两个底角分别相等;而它右边的这个锐角三角形就没有这些特性,不是轴对称图形.

  4.做教科书第101页“做一做”中的题目.

  让学生根据轴对称图形的概念进行判断,并画出对称轴,还可以让学生简单地说一说自己判断的理由.

  5.教学轴对称图形的性质.

  教师让学生拿出直尺,量一量第101页“做一做”中每个轴对称图形左右两侧相对的点到对称轴的距离,能不能发现什么规律.

  教师小结:在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等.

  二、课堂练习

  做练习五的第1~6题.

  1.第1题,让学生说一说自己是怎样判断的,尤其是第4个图,多让几个学生说一说.

  2.第2题,要让学生找出教科书上没有出现过的三个轴对称图形.比如说红领巾、量角器、黑板、桌面、电视机等等.

  3.第3题,让每个学生都动手剪一剪,再说一说剪下的图形展开后,是不是轴对称图形,使学生知道对称性质在服装等行业中的用处,进而认识到对称性质的用途是十分广泛的.

  4.第4题,让学生仔细观察、判断,再找出“0”、“8”各有几条对称轴.

  5.第5题,先让学生回忆学过哪些平面图形,再找出哪些是轴对称图形,各有几条对称轴.

  6.第6题,指名到前面画,观察学生第1个图怎样画对称轴,第2个图画几条对称轴.

轴对称图形教案7

  《轴对称图形》

  教学内容:

  小学数学第四册新增内容《轴对称图形》

  教学目标:

  1、在游戏比赛中凸现轴对称图形的基本特征,并通过观察、动手操作知道沿着一条直线对折,直线两边完全重合的图形叫轴对称图形。

  2、通过判断、验证、比较进一步加深对轴对称图形的认识和理解,并认识对称轴,根据特征会找和画一个轴对称图形的对称轴。

  3、在判断、验证、比较中培养学生的观察、动手操作、思辨和语言表达能力,发展学生的空间观念。在交流、合作中学生学会从多种角度思考问题,培养思维的灵活性。

  教学重点:

  通过观察、动手操作,初步认识轴对称图形。

  教学难点:

  会找并且会画轴对称图形的对称轴。

  学科素养:

  养学生的观察、动手操作、思辨和语言表达能力,发展学生的空间观念

  学会从多种角度思考问题,培养思维的灵活性。

  教学过程:

  一、比赛引入,聚焦轴对称图形的基本特征。

  师:今天上课我们先做个游戏,比一比女同学和男同学谁的眼力最好,老师分别给你们看图形的一部分,你们马上猜出这个图形是什么?准备好了么?

  (出示多媒体):

  女生::蝴蝶。

  师:女生,你们都同意么?(出示)

  反馈:很好(竖起大拇指)。

  出示:

  男生1:木棍。男生2:铲子。男生:……

  出示:

  反馈(淡淡地宣布):第一局男生输了。

  出示第二轮题:

  女生异口同声:飞机。

  随即媒体出示:

  反馈:真厉害。

  问:现在轮到男同学了,媒体出示——

  男生3:盆子。男生4:帽子。男生:……

  媒体出示:

  反馈:第二轮男生又输了,再看最后一轮。

  出示:

  女生兴奋地叫起来:剪刀!

  随即出示并赞扬道:女生的眼力真厉害,男生看你们的了。

  出示:

  男生5:书。

  男生6:乒乓板。

  男生:……

  出示:并同情地说道:哎!可惜,又错了。

  生:老师,这不公平,女生猜得简单。

  教师回头一看银幕:你们猜得也很容易的呀!

  生:不是的,女生猜的图形两边一模一样的。

  (分别指着不同图形让同学们用语言说一下上下还是左右两边一模一样)

  评价:你不仅会观察图形中的特征,还能用简洁的语言叙述出来,一句话就让大家都听明白了,真厉害!

  师:老师画一条直线(教师在媒体的蝴蝶上画了一条对称轴,)你们说的是不是这条直线的两边一模一样。

  追问:那么飞机和剪刀的这条直线在哪里?(学生用手比划)男生猜的图形有没有这条直线?

  【设计说明:由于比赛内容的不公平,必然导致比赛结果的不公平,从而激发每个学生在为不公平比赛申诉中发现图形的特征,即直线的两边完全重合,直接突出知识点】

  二、缓和矛盾,揭示概念

  问:这样看来不是我们男同学的眼力差,而是女同学猜的图形很特殊。那么男同学,如果老师也给你们这样的图形,你们能一下子猜出来吗?

  银幕出示:半个兔子头

  男生:兔子

  追问:老师把图打印了出来,你们刚刚说女生的团都有一条直线,兔子的直线在哪里?(指一指)

  追问:你们刚刚又说直线两边的图案是?

  操作:那么我想请一个同学用最简单的方法证明直线两边的图形完全一样?(停顿,给同学们思考后)不过我提个要求,要求边验证边说出验证过程。

  生:边操作边说,把“兔子头”对折,直线两边一模一样。

  (在学生折前:你是不是随便折,那你怎么折?在学生折的过程中:教师抓住“对折”要沿着一条直线对折、“一模一样”数学中叫“完全重合”,引导“沿着一条直线对折,直线两边完全重合”。(板书)

  师:像这样沿着一条直线对折后,直线两边完全重合的图形叫什么图形?(板书:轴对称图形,并标注拼音zhóu)

  全班朗读课题。

  【设计说明:通过比赛,直接抓住图形的主要特征,激发学生探究的欲望,学生在动手操作验证中揭示轴对称图形的概念,自然流畅。】

  三、在判断、辨析中进一步理解轴对称图形

  师:同学们现在如果给你一个图形,你能判断它是不是轴对称图形吗?

  出示图1:

  生:手势判断(是轴对称图形),一位学生上台演示证明(先指一指直线,再折,引导学生用规范的数学语言叙述概念)

  出示图2:

  生:手势判断(一小部分学生认为是的)

  师:请认为是轴对称图形的同学上来验证给大家看。

  反馈:生活中有一些图形看看是的,很有迷惑性,但实际上却不是的`。

  出示图3:飞机和

  生:手势判断(是轴对称图形),一位学生上台演示证明,下面的学生一起说:沿

  着一条直线对折后,直线两边完全重合,所以是轴对称图形。)

  【设计说明:在正与反的判断辨析中进一步明确沿着一条直线对折,直线两边完全

  重合的图形是轴对称图形】

  出示图4:

  生:手势判断(一部分学生认为是的)

  师:这一次请大家在脑中“折一折”验证一下,验证后可以改变注意。

  一会儿,仅剩下少数学生坚持说“是的”,教师请其中的一位学生动手验证,结果发

  现不完全重合。

  反馈:最开始的时候很多同学一会儿说是,一会儿说不是,但是后面老师说了句什么话,脑中折一下,很多人改变了主意是怎么回事?

  生:老师,如果这双鞋背靠背,或者头对头就是轴对称图形了。(准备实物再对折)

  师出示图5:

  生:手势判断(大部分学生认为不是的)

  生1:如果两条鱼嘴对嘴或尾对尾就是了,并上台演示对折,不完全重合。

  生2:我认为是的,这样折不行,这样折就行了,生演示

  评价:对呀,说的真好,很会动脑筋,思维非常灵活,当发现这样折不行,可以换个角度折,只要找到一条直线,沿着这条直线对折,直线两边完全重合,这个图形就是轴对称图形。

  【设计说明:在判断完图3时,部分学生有可能还停留在直线两边“一模一样”,而对对折后完全重合理解还不够透彻,通过图4的判断,让学生在脑中“折”(发展学生空间想象能力)到引导学生动手验证,在辨析中进一步加深对轴对称图形特征的认识,图5由于图4的负迁移,会产生争议,组织学生辨析,明确只要找到一条直线,直线两边完全重合的图形就是轴对称图形。同时又打破了学生的思维定势,更活跃了学生的思维。】

  四、认识对称轴

  师:刚刚同学们都说了轴对称图形都能沿着一条直线对折的,直线两边完全重合。(教师用手指出并画对称轴,如图像这样的一条直线我们称它“对称轴”)

  (上台画爱心,如果画的不一样)

  反馈:观察生1画的和老师有什么不一样?

  师:一般在数学上,画对称轴用直线,两边都要出头。

  追问:还有同学想画么,老师最后请一位同学上来画(画一个不是轴对称图形的溜冰鞋)

  反馈:你看看,同学们有不同意见了。让你画对称轴,只有轴对称图形才有,不是轴对称图形没有对称轴,老师和你开个玩笑的。

  全体学生练习画轴对称图形的对称轴。反馈略(书P:54/3)

  五、认识几何图形中的轴对称图形并能找到对称轴。

  师:接下去,同桌合作在信封内的几何图形中挑出轴对称图形。

  (图1)(图2)(图3)(图4)(图5)(图6)

  生1:图3、图4、图6是轴对称图形。

  生2:图2也是轴对称图形。

  生3:我折过的,图2不是轴对称图形。

  师:看样子,其他图形没意见,分歧在图2。请生3演示证明给大家看为什么它不是轴对称图形。

  生3:演示证明

  生2:这样折不行的,应该这样折,生2迫不及待上前演示证明:

  师:对呀!只要找到一条直线,沿着这条直线对折,直线两边完全重合,这个图形就是轴对称图形。

  师:接下去请找出轴对称图形的对称轴,看谁找得最多!

  反馈:图2有一条对称轴。图4有两条对称轴。图3有4条对称轴。

  讨论圆的对称轴。

  生1:圆有四条对称轴。并用自己的学具指给大家看他所折的折痕。

  生2:还有也,这位学生用自己的学具又折出两条。

  生3:有很多很多条,这位学生也用自己的学具演示给大家看。

  师:由于学具比较小大家看不清楚,老师请电脑演示给大家看。(多媒体演示)

  数也数不清的条数,数学上叫无数条。

  师:刚才我们学习了数学中的轴对称图形,你能在生活中找到轴对称图形吗?

  生1:黑板是轴对称图形。

  生2:窗子是轴对称图形。

  生3:红领巾是轴对称图形。

  生4:大众出租车的牌子。

  生……(教师规范成平面图形)

  师:老师也找了一些。(媒体出示生活中的轴对称图形有脸谱、剪纸……,渗透民族文化教育)

  小结:

  你今天有什么收获?

  作业:

  师:今天的回家作业就是利用课上所学的知识,剪一个轴对称图形,并向大家介绍你的巧方法。

  【设计说明:由于课堂上的时间是有限的,怎样让课堂教学得于在课外有趣的延伸,剪一个轴对称图形,既体现了对轴对称图形进一步理解和运用,又有动手的乐趣,一举两得。】

  板书设计

  轴对称图形

  轴对称图形

  沿着一条直线对折,直线两边能够完全重合,这样的图形就叫做轴对称图形

轴对称图形教案8

  教学目标

  1、通过观察和操作认识轴对称图形和轴对称的含义。

  2、会画出轴对称图形的对称轴。

  3、使学生在操作中加深对图形的认识,建立空间观念。

  教学重点

  认识轴对称图形,画对对称图。

  教学难点

  认识图形,建立空间观念。

  教学过程

  一、铺垫孕伏

  1、口算

  二、探究新知

  1、投影出示

  树叶图、青蜓图、天平图,任意不对称图形。

  2、引导学生分组讨论

  (1)这些图形,形状有什么特点?

  (2)再找出一些生活中实例图形。

  3、通过汇报,在教师指导下,使学生明确到:

  树叶图、青蜓图、天平图,图形左右部分一样,并且说明:这些图形给人以美感,如果想象一个图形不对称,使人觉得不舒服。

  4、(课件演示:对称图形下载)

  将树叶图对折、青蜓图对折,天平图对折,使学生观察到这些图形,沿着一条直线对折,两侧的图形能够完全重合。

  5、同桌同学合作实验

  先把一张纸对折,在折好的一侧画出图形,剪下来,再把纸打开,看一看能得到一个什么样的图形?

  6、教师明确:这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴。

  7、投影出示,做一做和练习二十六1题,引导学生判断。

  (1)教师出示投影。

  (2)学生讨论、交流。

  8、分组实验,组内每人画一种图形。

  (1)出示101页上图。

  (2)每人在方格纸上画一种图形,并剪下来。

  (3)比较,哪些图形是轴对称图形,画出它们的对称轴。

  (4)教师指导。

  (5)使学生明确:正方形、长方形、等腰三角形、等腰梯形、圆,都是轴对称图形。

  (6)启发学生,每一种图形,可以画几条对称轴。

  学生分组讨论交流。

  汇报:正方形可以画4条对称轴。

  长方形可以画2条对称轴。

  等腰三角形、等腰梯形各有一条对称轴。

  圆有无数条对称轴。

  (7)引导学生回忆判断,学过的平面图形,哪些是轮对称图形,哪些图形只有一条对称轴,哪些不止一条,可以出示图形。

  三、课堂练习

  1、下面的数字,哪些是轴对称图形?它们各有几条对称轴?

  2、把一张纸对折后,剪下一个图形,把剪下的`图形展开,所得的图形是不是轴对称图形?

  引导学生同桌或组内操作。

  引导学生在书上填画。

  四、课后作业

  运用学过的知识,用纸剪去一个对称图形,可以怎样剪?

  五、板书设计

  轴对称图形

  轴对称图形

轴对称图形教案9

  第四单元

  第五课时:轴对称图形

  教学内容:轴对称图形、对称轴、对称性质;课本第100~101页,完成相应的“做一做”题目和练习二十六的第1~7题。

  教学目的:使学生初步认识轴对称图形与对称轴;会找出对称图形的对称轴;并知道对称轴两侧相对的点到对称轴的距离相等。

  教具、学具:剪刀、复写纸、白纸。

  教学过程:

  一、复习。

  说一说你是如何用对折的方法找出一个圆的圆心的。

  二、新授。

  1.导入。

  在日常生活中,我们会看到一些物体或图形很特别,把它们像圆一样沿着一条线对折,两边就完全重合;如枫树叶、蝴蝶(出示图形)等这些图有对称美;那么,到底什么样的图形才是轴对称图形,这就是我们今天要学的内容。

  板书课题:轴对称图形。

  2.轴对称图形与对称轴。

  教师把一张白纸对折,中间夹上双面复写纸,在纸上面画半个花瓶,然后把纸展开,得到以折痕为对称轴的整个花瓶。

  从图中不难发现折痕两侧物体形状与图形的大小完全一样。

  师生一起打开课本第121页,看上半页的三个图(树叶、蜻蜓、天平)由学生说一说他们的.特点。(他们以树叶的主干、蜻蜓的身躯、天平的指针为轴左右两侧形状、大小一样。)

  做课本上的实验,把一张纸对折并按书中的图样画好,再用剪刀剪下,把纸打开可看到它是以树干这直线为轴,两侧的图形能够完全重合。

  小结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形(指着树叶等)就是轴对称图形。折痕所在的这条直线叫做对称轴。

  回答课本第121页下面的“做一做”。

  3.画(找对称轴)。

  对称轴的轴法是一横一点一横点穿过图形,如“—·—·—”。先要求学生判断下面图形是否轴对称图形?然后要求学生判断下面图形是否轴对称图形?

  学生画出对称轴。

  最后要求学生在课本上量一量对称轴两侧相对的点到对称轴的距离是否相等。通过多处的测量可概括出:在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等。

  三、巩固练习。

  1.课本100页“做一做”第1题。

  1

  第四单元

  2.课本第101页“做一做”第2题。先找出对称轴然后再量一量对称轴两侧

  相对的点距离是否相等。

  3.练习二十六第1~6题。

  课后小结:

  2

轴对称图形教案10

  教学内容:教材62-63页。

  教学目标:

  1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。

  2、让学生在学习活动中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。

  教学重点:经历发现长方形、正方形对称轴条数的过程。

  教学难点:画平面图形的对称轴。

  教学准备:多媒体课件、实物投影仪、一张彩色版花鸟图、尺、学具(长方形纸张、正方形纸张、尺。)

  教学过程:

  课前热身:

  动手比划平移(拉开抽屉、举重)、顺时针旋转、逆时针旋转(左右手各两遍)。

  一、复习导入。

  出示泰国寺庙图、蝴蝶图、脸谱、剪纸。提问:这四幅图有什么共同的特征?(都是轴对称图形)

  指着剪纸提问:你怎么知道它是轴对称图形?(指名说,师相机出示轴对称图形的概念。)

  把剪纸图贴在黑板上,提问:谁能上来用手比划出这幅图的对称轴?(指名板演,教师用点段相间的线画出对称轴)

  出示以上四幅图的对称轴及对称轴的概念。

  谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。(板课题:轴对称图形的对称轴)齐读课题。

  二、教学例题。

  1、谈话:首先我们研究长方形的对称轴。请同学们拿出一张长方形纸对折,并用尺画出它的对称轴。

  学生折纸画图,教师巡视,发现不同的折法。

  2、指名到投影仪前展示自己的折法和画法。

  提问:你能告诉同学们折纸时应该注意什么?画对称轴时应该怎么画?

  对他的发言有没有不同的意见?

  谁还有不同的折法吗?也来展示一下。(指名展示)

  提问:为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?

  3、谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。(板书长方形)(指名回答)

  师小结:通过操作我们发现长方形只有两条对称轴。

  4、指着黑板上画好长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。

  假设学生有如下几点办法:

  1、用和黑板上长方形一样大小的纸对折,找到对称轴后再在黑板上描画。师指出这样也是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?

  2、用量长方形对边中点再边线,画出对称轴的方法。师对这种方法予以表扬,并提问:你能说一说是怎样想到先找到对边中点的吗?

  师拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么位置?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画长方形的对称轴?

  指名到黑板上量长方形的边,取中点。学生说怎样画对称轴,教师画,画成如右形状,并指出:因为对称轴是折痕所在的直线,所以可以让对称轴延伸到图形外。我们归纳一下画对称轴的方法。(板:方法:1、量取图形对边的中点。2、尺对齐两个中点划虚线。)

  5、让学生各自在课本62页画出长方形的对称轴,画好后同桌检查,并提问:你能画出长方形的几条对称轴?

  三、教学“试一试”。

  谈话:下面我们研究正方形的对称轴。请拿出一张正方形纸,再通过折纸研究它有几条对称轴,再在书上画出正方形的各条对称轴。尽量独立完成,如果有困难可与同桌商量,也可以在小组内研究。

  先展示只画出两条对称轴的图形,提问:这两条对称轴画得对不对?还有其他对称轴吗?

  再展示画出四条对称轴的'图形,指着两条对角线所在的对称轴,提问:这两条线也是正方形的对称轴吗?让没画出这两条对称轴的学生折纸看一看这两条线是不是正方形的对称轴,并让他们补画出这两条对称轴。

  提问:正方形有几条对称轴?

  四、教学“想想做做”

  1、做第1题。

  (1)指名读题.。提问:这道题让我们做什么?再做什么,最后做什么?(由于时间较紧的关系,以及学具的准备有限,就不剪不折,只让学生画对称轴。课后,再剪、折来验证学生的估算是否正确。)

  (2)让学生各自画对称轴或划X。

  (3)指名展示。

  (可补充说明:四条边相等的四边形是菱形,它有2条对称轴。)

  2、做第2题。

  (1)让学生自己读题。

  (2)提问:题中的图形都是轴对称图形吗?第几个图形不是轴对称图形,为什么?

  (3)看一看每个轴对称图形有几条对称轴,在书上画出来。

  (4)展示部分学生的答案,共同评议。(从左往右三个图的对称轴分别有3、4、5条。)

  五、拓展练习。

  1、出示:数字也可以写成轴对称图形。

  (1)学生各自观察,并指名板演出是轴对称图形的对称轴。

  (2)指名回答,师生评议。

  2、出示:文字也可以写成轴对称图形。

  (1)学生各自观察,并用手比划出对称轴。

  (2)指名回答,师生评议。

  六、拓展延伸。

  生活中的很多事物都可以看作轴对称图形,[一一出示:生活中的轴对称(2幅)]小到杯子、打开的书,大到飞机、军舰。生活中还有许许多多的轴对称图形,同学们平时要多观察就可以发现。

  七、课后作业。

  教材63页第3、4题。

  八、全课总结。

  提问:这节课你学习了哪些知识?还有什么收获?

  九、板书:

  8轴对称图形的对称轴

  方法:

  1、量取图形对边中点。

  2、用尺对齐两个中点划虚线。

轴对称图形教案11

  15.1轴对称图形教案

  【教学目标】

  知识与技能

  1、能理解平面直角坐标系中,与已知点关于x轴或轴对称的点的坐标的规律。

  2、能作出与一个图形关于x轴或轴对称的图形。

  过程与方法

  1、通过作图提高学生的实践能力。

  2、通过现实情境的创设,使学生体验到数学就在我们身边,从而培养审美情趣。

  情感、态度与价值观

  1、通过贴近生活的素材和问题情境,激发学生学习数学的热情和兴趣,培养学生勇于创新,多方位审视问题的创造技巧。

  2、在作图过程中使学生体验数形结合思想,体验学习的乐趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神。

  【重点难点】

  重点:用坐标表示点关于坐标轴对称的点的坐标。

  难点:找对称点的坐标之间的关系、规律。

  【自主学习】

  一、复习:

  1、如果一个平面沿着一条直线折叠,直线两旁的部分能够_____,那么这个图形叫轴对称图形,这条直线叫____。

  2、经过线段的___并且___于这条线段的直线叫做线段的垂直平分线,又叫做线段的中垂线。一条__的中垂线是它的对称轴。

  3、如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的_____;反过来,如果两个图形各对对应点的连线被同一条直线____,那么这两个图形关于这条直线对称。【 : 】

  4、在平面直角坐标系中,点 P(1,-1)关于 x 轴对称的点的坐标是___;点 P1(1,2) 关于 轴对称的点的坐标是____。【 】

  二、思考:

  分别写出下列各点关于 x 轴、 轴对称的点的坐标:

  一般地,已知点 P (a,b):

  ⑴ 点 P 关于x 轴对称的点的坐标为P1(__,__),

  ⑵ 点 P 关于 轴对称的点的坐标为 P2(__,__)。

  关于 x 轴对称的点,横坐标_______,纵坐标_______,关于 轴对称的点,横坐标_______,纵坐标_______。

  四、例题:

  ⑴ 如上图,写出四边形 ABCD 的 4 个顶点的坐标;

  ⑵ 画出四边形 ABCD 关于 轴的对称图形 A1B1C1D1;

  ⑶ 写出点 A1,B1,C1,D1 的坐标。

  五、巩固练习:

  1、分别写出下列各点关于 x 轴、 轴对称的点的坐标:

  A(-2,4) , B(3,-2) ,

  C(-1,-2) , D(4,0) 。

  2、作出图中多边形 ABCD 关于 x 轴、 轴的'对称图形。 (上图“五-2”图)

  3、已知长方形 ABCD 的顶点坐标为 A(2,4),B(6,4),C(6,2),D(2,2) 。

  ⑴ 在图⑴中画出长方形 ABCD 向下平移 6 个单位得到的长方形 A1B1C1D1,写出点 A1,B1,C1,D1 的坐标;【 】

  ⑵ 在图⑵中画出长方形 ABCD 关于 x 轴对称的长方形 A2B2C2D2,写出 A2,B2,C2,D2 的坐标;

  ⑶ 你认为上述两题变换所得的结果是否一样?为什么?

  4、△ ABC 在平面直角坐标系中的位置如图所示。

  ⑴ 作出△ABC 关于 轴对称的△A1B1C1,并写出点 A1,B1,C1,的坐标;

  ⑵ 将△ABC 向右平移 6 个单位,作出平移后的△A2B2C2,写出点 A2,B2,C2,的坐标;

  ⑶ 观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴。

  六、习题:

  1、若点 P 在第三象限,则点 P 关于 轴的对称点在第__象限,点 P 关于 x 轴的对称点在第__象限。

  2、点 P (-2,3) 关于 x 轴的对称点坐标是______。

  3、已知点 P (3,-1) 关于 轴的对称点 Q 的坐标是 ( a+b,1-b ) ,则 ab=__。

  4、已知点 A (2,a) 关于 x 轴的对称点是 B ( b,-3 ) ,则 ab=__。

  5、若点 (10-a,5+b) 与点 (2,-5) 关于 轴对称,则 a+b=___。

  6、在平面直角坐标系中,若点P(3,a) 和点Q(b,-4) 关于x轴对称,则a+b=__。

轴对称图形教案12

  教学目标:

  1、 通过实践活动,进一步加强对轴对称图形的认识,培养在实际生活中的创造性,提高数学学习的兴趣。

  2、 通过参与创作,合作交流,启迪灵感,感受生活。

  3、 通过欣赏剪纸作品,感受古今劳动人民的高超技艺,培养民族自豪感。

  教学重、难点:学习运用轴对称图形的特点创作美丽的图案。

  教具准备:实物投影仪、剪纸作品、剪刀、彩色纸片。

  教学过程:

  一、作品赏析

  1、利用实物投影仪欣赏剪纸作品。

  2、介绍:我国劳动人民创造出了中国民间艺术——剪纸,又叫做窗花。这古老的传统民间艺术有1000多年的历史了,风格独特,深受国内外人士的喜爱。今天,我们就来欣赏和学习制作剪纸。

  3、问:你最喜欢刚才的哪一幅剪纸?

  教师相机对部分作品进行解说。

  二、作品分类

  1、观察分析。

  谈话:在民间艺人的创作中,这些剪纸使分不同种类的,那么你们能进行分类吗?

  小组讨论,学生分类只要合理就予以充分肯定。比如:分为人物、动物、花草、文字等类别或以颜色分类。

  小结:同学们观察得非常仔细,从创作内容上看可以分为这几类,我们还可以从创作的方法进行分类,比如有的剪纸图案是由以组或几组完全相同的图案组合而成的,大家来看看有哪些。

  2、研究方法

  引导观察:你们再来看现在这些作品,它们有什么共同的特点?

  教师拿出其中以一次对折形式剪成的枫叶图案。问:这张剪纸是什么图案?你知道这样漂亮图案是怎样剪成的吗?

  组织学生拿出工具进行剪纸。

  三、作品创作

  1、尝试创作(一次对折剪纸)

  教师指导枫叶图案:

  一次对折——沿外边画轮廓线——剪去轮廓线以外的部分。

  同桌进行交流、评析,将优秀的作品贴在黑板上。

  小结:剪纸时对折要整齐,画样要美观,用剪要稳当。

  2、二次创作

  出示P62下方的剪纸步骤。

  提出要求:按照要求及顺序动手试一试,看谁做得好。

  组内进行交流,选出优秀作品。

  小结:我们通过学习剪纸,发现了很多方法,但基本都是每次只剪出了一幅图案,想一想,能不能一次剪出多幅图案呢?

  P63长方形剪花边——叠剪图案

  3、独立创作

  谈话:剪纸的分类大体可以分成三大类:阳刻(剪去的轮廓线之外的.空白部分,保留轮廓线)、阴刻(剪去轮廓线保留其他部分)、阴阳混刻。

  要求:可以用对折的形式创作,也可以不用对折进行创作,对纸张的样式也不受限制,同学们以小组为单位,制作一幅或两幅作品。

  四、全课总结

  1、启发:同学们的作品样式繁多,都很美观,这些作品与我们以往完成的作品有什么区别?

  规律:凡是对折后完成的剪纸作品都是轴对称图形,不对折而完成的图形却不是。

  2、引导:为什么会出现这种情况?

  原因:折痕就是图形(图案)的对称轴,折痕的两侧是能够完全重合的。

  五、课后作业

  利用轴对称图形的原理,制作完成一组“可爱的动物”的花边,装饰班级墙报。

轴对称图形教案13

  学情分析:由于本教材是三年级下册的教学内容,所借用的则是二年级的学生。由于学生年龄小,自主探究的能力不强,如何让其在有限的时间和空间内,积极主动地参与到各个学习活动中,理解轴对称的含义,创造出轴对称图形,是本节课所需解决的问题。

  设计理念:图形特征的探究,方法应该是多元化的,而合作的学习方式能充分展示学生的各种思维方式,张扬个性,更好地培养学生的学习能力。为此,我设计了以下的教学活动。

  教学目标

  1、使学生初步认识轴对称图形,理解轴对称图形的含义,能用自己的方法创造出轴对称图形。

  2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。

  3、引导学生领略轴对称图形的美妙与神奇,激发学生的数学审美情趣。

  重点:让学生感知对称现象,认识轴对称图形。难点:判别轴对称图形方法的得出。

  教学过程:

  一、创设情景,激趣导入。

  (1)出示眼睛不对称的娃娃头像图片。学生发表意见,引出课题。

  师:在我们生活当中,有许多事物都是因为有了对称才产生美,今天我们就一起去认识有着对称美的轴对称图形。

  (创设贴近学生心理特点和认知水平的情景,自然而然把学生引入新课。)

  二、感悟特征,“识”对称。

  1.出示天安门、飞机、奖杯、等图片,引导学生观察,说出它们的共同点。

  2.引导学生动手操作。(课本附页的图形)。

  引导学生通过动手折一折、比一比,感受这些图形“对折后两边完全重合”的特征。

  3.出示各种几何图形,让学生小组合作,探究其是否对称。

  4.认识轴对称图形、对称轴定义

  师:像这样对折后,能完全重合的图形叫做:轴对称图形。(板书:对折 完全重合)。

  把轴对称图形对折后,折痕所在的这条直线称为:对称轴。(板书:折痕 对称轴)。

  (本环节,放手让学生操作、交流、体会。让他们在自主探索的过程中感悟特征。)

  三、深化认识,“做”对称。

  (1)让学生动手操作,创造轴对称图形。(学生操作,教师巡视)

  引导学生说说自己是怎么创造的,在交流中进一步深化学生对轴对称图形特征的认识。

  (2)展示学生作品。说说各自的创作方法。

  (在本环节设计了动手操作活动,使学生在获得发展的过程中愉悦身心,张扬个性。)

  四、多向拓展,“辩”对称。

  1.课件出示:天天开心。(心:是剪出来的轴对称图形)

  引导学生观察,发现“天”字也是轴对称的图形。

  2.出示字母: B A N G

  引导学生判断各个字母是否轴对称图形,出现争议的字母B,引导学生验证结果。

  3.挑战难题,激励优胜。

  ①“木”字的一半②看似轴对称的“奉”字,让学生判断分析,合成 “棒”字激励学生。

  4.指导学生掌握学习方法:(猜测——验证——总结)

  5.引导学生列举生活中的例子。

  (多向拓展,让学生感悟数学在我们生活中无处不在。)

  五、升华认识,赏对称。

  1、欣赏短片

  2、说一说。

  出示短片中不止一个对称轴的`图片,让学生利用自己的认知能力说一说,为以后的学习铺垫。

  (通过赏析,引导学生感受生活的美妙与神奇,激发学生发现美、创造美的积极情感。)

  六、课堂小结

  出示两幅是轴对称的表情图片,让学生说说自己今天的收获。(认知的、情感的)

  (本环节,既让学生感悟了成功的喜悦,也合理地整理了课堂的知识点。)

  师:轴对称图形是和谐、美丽的,而且在生活中发挥着重要的作用。最后,老师希望大家在以后的学习生活中,能继续用数学的眼光去观察生活,欣赏生活。

  板书设计: 轴对称图形

  (猜测——验证——总结)

  对折 完全重合

  折痕 对称轴

  教学反思:我在本节课让学生通过折一折,比一比,摸一摸等直观手段,让学生初步认识了轴对称现象,还有轴对称图形,让学生能以新的角度去观察物体,研究物体,体验它们的对称美。我这节课最大的遗憾是没有提供一个让学生充分展示的平台,没有给予充足的时间学生表达自己的观点。

轴对称图形教案14

  【教学目标】

  1.知识与能力

  (1)理解轴对称图形,两个图形关于某直线对称的概念。

  (2)了解轴对称图形与两个图形关于某直线对称的区别和联系。

  (3)了解轴对称的性质。

  2.过程与方法

  通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。

  3.情感、态度与价值观

  通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。

  【教学重点】

  轴对称图形和两个图形关于某直线对称的概念以及区别和联系。

  【教学难点】

  轴对称的性质。

  【教学方法】创设情境-主体探究-合作交流-应用提高.

  【教学用具】多媒体课件、直尺、剪刀和彩纸等

  【教学过程】

  一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形

  我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.

  问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片).

  (1)这些图形有什么共同的特征?

  对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?

  (2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?

  (3)你能利用手中的彩纸,剪出具有对称特征的图案吗?

  二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念

  师生互动操作设计:

  教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等.

  1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.

  归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴.

  2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?

  学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.

  在学生交流的基础上,引导学生对轴对称的概念进行归纳.

  把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

  3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:

  轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.

  轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.

  三、主体探索、教师引导,探究轴对称图形的`性质和线段垂直平分线的概念

  1. 如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C的对称点,线段AA′、BB′、CC′和直线MN有什么关系?

  学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合

  于是有 AP=PA′、∠MPA=∠MPA′=90°

  对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段.

  2. 鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”

  3. 进而引导学生进行归纳:

  轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”.

  类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”.

  四、师生合作,应用提高,拓展创新

  1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等

  先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?

  学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴.并将学生交流的结果展示在黑板上,师生交流心得和方法.

  对称轴是任何一对对应点所连线段的垂直平分线。为下一课学习垂直平分线的画法打下基础。

  2.利用以前认识过的一些简单的几何图形,如三角形,正方形,矩形,平行四边形,梯形等,以这些图形的任意一条边所在直线做为对称轴, 找出对称点,自己设计和创作轴对图形或是成轴对称的两个图,并将学生的成果展示在黑板上。

  五、 归纳小结

  1.这节课你学到了什么?

  (1).轴对称、轴对称图形的概念;;

  (2).轴对称和轴对称图形的区别和联系

  (3).线段垂直平分线的概念;

  (4).轴对称的性质。

  2.你还学到了什么?还想学习什么?

  六、布置作业、下课

  作业:收集和整理生活中有关轴对称的图片,课余时间进行交流,发现生活中对称的美。

  【教学板书】

  12.1轴对称

  1.轴对称图形

  (1)沿直线对折(2)两侧能够完全重合

  2.轴对称

  3.垂直平分线

  (1)过线段中点(2)垂直于这条线段

  4.轴对称的性质

  对称轴是任何一对对应点所连线段的垂直平分线

轴对称图形教案15

  教学目标:

  教学目标:

  1、 会画已知点关于已知直线 的对称点,会画已知线段的对称线段,会画已知三角形的对称三角形。

  2、 经历探索轴对称的性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力。

  三、教学重点与难点

  教学重点:作已知图形的轴对称图形的一般步骤。

  教学难点:怎样确定已知图形的关键点并根据这些点作出对称图形。

  学习过程:

  一.学前准备

  1、完成课本第10页的操作,即图1—6,并将你完成的操作带到课堂上来。

  2、思考:

  下列图形中,哪些是轴对称图形,请把它们找出来,画出它们所有的对称轴。

  3、请你在下图的方格内,设计一个轴对称图形。

  二.自学、合作探究

  (一)自学、相信自己(书本)

  实践、操作:

  1、思考:如图1-9, 3点都在方格纸的格点位置上。请你再找一个格点 ,使图中的4点组成一个轴对称图形。

  2、如果直线 外有一点 ,那么怎样画出点 关于直线 的对称点 ?

  问题一:画点关于直线 的对称点 的方法,并说明道理。

  问题二:怎样画已知线段的对称线段?怎样画已知三角形的对称三角形?说说你的想法和依据。

  (二)思索、交流(书本例题练习难)

  3、分别画出图1-10(1)、(2)、(3)中线段 关于直线 对称的线段 。

  4、 分别在图图1-10(1)、(2)、(3)的直线 上取一点 ,并画 关于直线 对称的 .

  (三)应用、探究(难度大综合纵横思考)

  例题讲解

  例题1、如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的`距离之和最短?

  例题1

  例题2

  三.学习体会(空)

  四.自我测试(书本练习)

  1.练习1 下列数字图象都是由镜中看到的,请分别写出它们所对应的实际数字,并说明数字图象与镜面的位置关系。

  1、如图1,线段AB与A’B’关于直线l对称,

  ⑴连接AA’交直线l于点O,再连接OB、OB’。

  ⑵把纸沿直线l对折,重合的线段有: 。

  ⑶因为△OAB和△OA’B’关于直线l , 所以△OAB -△OA’B’,直线l垂直平分线段 ,∠ABO=∠ , ∠AO’B=∠ 。

  图 1 图 2 图3

  2、如图2,三角形Ⅰ的两个顶点分别在直线l1和l2,且l1⊥l2,

  ⑴画三角形Ⅱ与三角形Ⅰ关于l1对称;

  ⑵画三角形Ⅲ与三角形Ⅱ关于l2对称;

  ⑶画三角形Ⅳ与三角形Ⅲ关于l1对称;

  ⑷所画的三角形Ⅳ与三角形Ⅰ成轴对称吗?

  3、如图3,四边形ABCD是长方形弹子球台面,有黑白两球分别位于E、F两点位置上,试问怎样撞击黑球E,才能使黑球先碰撞台边AB反弹后再击中白球F?

【轴对称图形教案】上海花千坊相关的文章:

轴对称图形教案02-02

《轴对称图形》教案04-02

《轴对称图形》教案12-17

轴对称图形教案12-17

轴对称和轴对称图形教案09-29

数学教案-轴对称和轴对称图形09-29

轴对称图形09-29

轴对称图形教案设计12-17

《轴对称图形》教案设计10-03