上海花千坊

《植树问题》教学设计

时间:2024-11-06 08:27:05 诗琳 教案 我要投稿
  • 相关推荐

《植树问题》教学设计(精选6篇)

  作为一名默默奉献的教育工作者,常常要根据教学需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。我们该怎么去写教学设计呢?以下是小编为大家收集的《植树问题》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《植树问题》教学设计(精选6篇)

  《植树问题》教学设计 1

  学习目标:

  1.学生会探究发现一条线段上两端植树和一端植两种情况植树问题的规律。

  2.使学生经历和体验复杂问题简单化的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,激发数学兴趣,体会数学价值。

  学习过程:

  一、知识铺垫

  马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

  1. 你都知道了些什么?

  2. 一共要栽多少棵树?你是怎样想的。

  二、自主探究

  大象馆和猴山相距60m。绿化队要在两馆间的`小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?

  1. 你都知道了 。

  2. 你认为一共要栽多少棵树?你会计算吗?试一试吧!

  总结

  植树问题

  总长( )=( )

  两 端 栽: 棵 数=( ) +1

  一 端 栽: 棵 数=( )

  两端不栽: 棵 数=( ) -1

  三、课堂达标

  1.小明家门前有一条35m的小路,绿化队要在路旁栽一排树。每隔5m栽一棵树(一端栽,一端不栽)。一共要栽多少棵?

  2.一条走廊长32m,每隔4m摆放一盆植物(两端不放)。一共要放多少盆植物?

  3. 一根木头长10m,要把它平均分成5段。每锯下一段需要8分钟。锯完一共要花多少分钟?

  《植树问题》教学设计 2

  教材分析

  本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第3课时,探讨封闭图形的植树问题(如果是矩形,每边可看作一端种另一端不种)。

  教学目标

  1、建立“棵数=间隔数”的数学模型,解决简单的实际问题。

  2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。

  3、体会数学模型的生活意义与作用,体验到学习的喜悦。

  学习重点:

  建立“树的.棵数=间隔数”的数学模型

  学习难点:

  为什么“树的棵数=间隔数”?

  预设过程

  一、复习开放情形

  ……

  在一条20米路的一侧种树(两端都种),每2米种一棵,共需种几棵?

  在一条20数路的一侧种树(两端都不种),每2米种一棵,共需种几棵?

  ……

  在一条20米路的一侧种树(一端种),每2米种一棵,共需种几棵?

  1、揭题:植树问题。

  2、呈现问题,请学生解决。

  3、反馈解法,说说什么情况下选择什么方法。

  二、研究封闭情形

  用围棋摆一个正方形,每边摆7个,一共需要多少围棋?

  1、议:7×4=28对不对?

  2、根据要求及图形,用自己的方法解决。

  3、反馈各种解法,说说自己的方法的怎么避免重复计数的?

  4、议:(7-1)×4的理由是什么?

  三、练习

  1、完成P121做一做-1,3。

  2、完成P121做一做-2,并讨论最多的情况。

  3、画图完成第3题。

  《植树问题》教学设计 3

  教学内容

  义务教育课程标准实验教科书(人教版)四年级下册数学广角。

  教学目标

  1.经历将实际问题抽象成数学模型的过程,掌握种树棵数与间隔数之间的关系。

  2.会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。

  3.感悟构建数学模型是解决实际问题的重要方法之一。

  教学重点

  让学生发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。

  教学过程

  一、创设情景,提出问题

  情境:同学们参加植树活动,要根据植树要求“动脑筋,领树苗”。

  问题:有一条12米长的小路,一小组要在小路的一边植树,要求每隔2米栽一棵(两端都栽),该领多少棵树苗呢? (大屏幕出示)

  二、探索规律,建立模型

  1、实践操作,得出结论

  (1)初步感知,大胆猜想

  你们认为一小组的.同学该领多少棵树苗呢?

  (2)动手操作,验证猜想

  用画图法或摆一摆的方法“栽一栽”。

  2、尝试不同的栽法,积累研究素材

  师:刚才我们是每隔2米栽一棵树,发现出现了6个间隔,可以栽7棵树。你们还有不同的栽法吗?

  (1) 激发兴趣谈栽法

  (2) 自由选择试栽法

  (3) 交流汇报作记录

  3、观察分析,发现规律

  师:现在请大家认真观察一下老师记录的这些数据,你会不会有所发现呢?先独立思考,再把你们思考的结果互相说一说。

  (1)认真观察,独立思考

  (2)小组交流,集思广益

  (3)班级汇报,总结规律

  三、运用规律,解决问题

  1、运用规律,解答117页的例1。

  同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  2、运用规律,解答118页的“做一做”。

  园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  3、运用规律,解答119页的“做一做”的第1题。

  在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?

  小结:安装路灯问题也是一种植树问题。

  《植树问题》教学设计 4

  教学目标:

  1. 使孩子通过生活中的事例,初步体会解决植树问题的方法。

  2. 初步培养孩子从实际问题中探索规律,找出解决问题的有效方法 的能力。

  3. 让孩子感受数学在日常生活中的广泛应用,培养孩子的应用意识 和解决问题的能力。

  教学重点:

  用解决植树问题的方法解决实际问题。

  教学难点:

  栽树的棵数与间隔数之间的关系。

  教具准备:

  多媒体课件。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是孩子学习数学的重要方式。”同时指出:“孩子是数学学习的`主人,老师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥孩子的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程:

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  通过这节课的学习,我们要解决哪些问题呢?

  1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

  2. 能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让孩子回答)你算的对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。

  ②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

  ③现在你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2. 孩子自学探讨。(师巡视)

  3. 班内交流。孩子回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1. 做一做:118页孩子独立完成。订正时说说怎么想的,重点让孩子明确先求出间隔数,即36棵树有35个间隔。

  2. 122页第2题。独立完成,同桌交流想法,可一生板演。

  五、检测反馈:(独立完成)

  1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

  2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

  孩子完成后师批阅订正,发现问题及时解决。

  六、总结延伸:

  这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

  《植树问题》教学设计 5

  教学内容:

  人教版五年级上册数学第七单元数学广角植树问题

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的.思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数+1=棵数,棵数-1=间距数

  教学过程:

  一、设计情景、引入课题

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  (课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、理解间隔数,引入课题。

  在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

  二、探索新知,探究规律

  1、出示招聘启事

  在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

  2、出示例题,理解题意:

  师:(课件出示例题。)

  师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

  (课件解释关键词语,加深学生理解)

  师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

  3、出示合作要求。

  (1)教师讲解小组合作要求。

  (2)学生4人小组开始合作学习,利用学具设计出植树方案。(可

  以用不同的形式表达)

  (3)教师巡视,指导学生小组合作。

  (4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

  (5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

  4、以小组为单位探究棵数与间隔数间的关系:

  (1)数一数:数出棵数和间隔数。

  (2)比一比:比较出棵数和间隔数之间的规律。

  两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

  只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

  两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

  三、课堂小结、反馈练习

  1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  2、广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

  《植树问题》教学设计 6

  教学内容:

  教材P107例2。

  学习目标:

  知识与技能:通过探究发现一条线段上‘两端都不种’和‘只种一端’的植树问题的规律。

  过程与方法:经历和体验“复杂问题简单化”的解题策略和方法。

  情感、态度与价值观:感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。

  学习重、难点:

  1、发现一条线段上‘两端都不种’和‘只种一端’的植树问题的规律。

  2、应用规律解决稍难的.实际问题。

  学法指导:

  自主探索、合作交流。

  学习过程:

  课前预习案:

  马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

  1、你都知道了些什么?

  2、一共要栽多少棵树?你是怎样想的。

  一、课前准备。

  1、小游戏。拿出纸条,分别把它们等分成2段、3段、4段,要剪()次、()次、()次,比较剪的次数和纸条的段数有什么关系。

  2、刘翔110米跨栏的图片,学生动手设计:在110米的跑道上,每10米放一个跨栏,一共可以放多少个跨栏?

  二、合作探究,发现规律。

  1、同学们在全长10米的小路一边植树,每间隔5米栽一棵。(两端不栽)一共要栽多少棵?

  间隔数是()树的棵数是()

  我会用线段图表示:

  2、同学们在全长10米的小路一边植树,每间隔2米栽一棵。(两端不栽)一共要栽多少棵?

  间隔数是()树的棵数是()

  我会用线段图表示:

  三、应用规律。

  1、阅读课本107页的例2,结合情境图理解题意。

  小路的两端是什么?这种情况下还需不需要栽树呢?棵树与间隔数有什么关系?两旁都不栽要先算什么?

  引导:请同学们先在纸上用线段图画一画你的种法.再在小组中交流、讨论。

  2、(出示线段图)问题分析:

  两端都栽:

  两端不栽:

  3、讨论比较例1和例2的不同。

  例1是两端都(),所以棵数比间隔数()

  例2是两端都(),所以棵数比间隔数()

  4、发现规律。

  (1)说今天的发现。

  如果要在两个物体之间种树,那么

  棵数=间隔数-1(单边)

  (2)说解决植树问题的方法。

  情况一:棵数=间隔数+1(单边)

  情况二:棵数=间隔数-1(单边)

  5、小组讨论

  (1)已知棵数和全长胡情况下,怎样求株距?

  (2)已知棵数和株距的情况下,怎样求全长?

  四、学以致用。

  1、完成教材第107页“做一做”第2题。先把题目的要求读一读,然后同桌互说,再指名学生说一说。

  2、教材第109页练习二十四第3题。

  (1)指名一名学生朗读题目,理解题意。

  (2)提问:从题目中你能得到什么信息?这种架设电线杆的问题应该怎么计算?

  (3)学生讨论后交流。

  (4)组织学生独立列式解答,并相互订正。

  3、第8题,学生独立列式解答,并相互订正。

  4、第6题,读题说说这道题什么样的植树问题?你能解答吗?

  五、总结与评价

  这节课你经历了探究,在探究中你发现了什么?在学习中你收获了什么?在应用中你懂得了什么?

  布置作业:

  板书设计:

  植树问题

  总长÷()=()

  两端栽:棵数=()+1

  一端栽:棵数=()

  两端不栽:棵数=()—1

【《植树问题》教学设计】上海花千坊相关的文章:

小学数学《数学广角——植树问题》教学设计09-25

《植树问题》的教学反思05-02

植树问题教学反思01-08

植树问题教学反思05-07

《植树问题》教学反思04-06

《植树问题1》教学反思05-01

教学设计的实质是问题设计04-30

《植树问题》教案设计(精选13篇)03-28

《植树问题》教案设计7篇01-30