上海花千坊

初三数学上册知识点总结

时间:2024-10-21 09:26:49 晓丽 总结 我要投稿
  • 相关推荐

初三数学上册知识点总结

  在学习中,看到知识点,都是先收藏再说吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。为了帮助大家更高效的学习,下面是小编整理的初三数学上册知识点总结,欢迎阅读与收藏。

初三数学上册知识点总结

  初三数学上册知识点总结

  一、重要概念

  1.数的分类及概念数系表:

  说明:分类的原则:1)相称(不重、不漏) 2)有标准

  2.非负数:正实数与零的统称。(表为:x0)

  性质:若干个非负数的和为0,则每个非负数均为0。

  3.倒数:

  ①定义及表示法

  ②性质:A.a1/a(a1);B.1/a中,aa1时,1/aD.积为1。

  4.相反数:

  ①定义及表示法

  ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

  5.数轴:

  ①定义(三要素)

  ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

  6.奇数、偶数、质数、合数(正整数-自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7.绝对值:

  ①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│0,符号││是非负数的标志;

  ③数a的绝对值只有一个;

  ④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。

  二、实数的运算

  1.运算法则(加、减、乘、除、乘方、开方)

  2.运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]

  分配律)

  3.运算顺序:A.高级运算到低级运算;B.(同级运算)从左

  到右(如5 C.(有括号时)由小到中到大。

  三、应用举例(略)

  附:典型例题

  1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.

  2.已知:a-b=-2且ab0,(a0,b0),判断a、b的符号。

  初三数学上册知识点总结

  直角三角形的判定方法:

  判定1:定义,有一个角为90°的三角形是直角三角形。

  判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。

  判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

  判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

  判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么

  判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。

  判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

  初三数学上册知识点总结

  不等式的概念

  1、不等式:用不等号表示不等关系的式子,叫做不等式。

  2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

  3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

  4、求不等式的解集的过程,叫做解不等式。

  5、用数轴表示不等式的方法。

  不等式基本性质

  1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。

  2、不等式两边都乘以或除以同一个正数,不等号的方向不变。

  3、不等式两边都乘以或除以同一个负数,不等号的方向改变。

  4、说明:

  ①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

  ②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

  一元一次不等式

  1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

  2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。

  一元一次不等式组

  1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

  2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

  3、求不等式组的解集的过程,叫做解不等式组。

  4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

  5、一元一次不等式组的解法

  1分别求出不等式组中各个不等式的解集。

  2利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

  6、不等式与不等式组

  不等式:

  ①用符号〉,=,〈号连接的式子叫不等式。

  ②不等式的两边都加上或减去同一个整式,不等号的方向不变。

  ③不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  7、不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  初三数学上册知识点总结

  第1章 二次根式

  学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。

  在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:

  注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到

  并运用它们进行二次根式的化简。

  二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。

  第2章 一元二次方程

  学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

  本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

  22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

  (1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。

  (2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

  (3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

  22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

  初三数学上册知识点总结

  初三数学知识点第一章二次根式

  1二次根式:形如a(a0)的式子为二次根式;性质:a(a0)是一个非负数;aaa0;

  2a2aa0。

  2二次根式的乘除:ababa0,b0;

  aaa0,b0。bb3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。

  4海伦-秦九韶公式:S是三角形的面积,Sp(p)(pb)(pc),p为pabc。2第二章一元二次方程

  1一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。

  2一元二次方程的解法

  配方法:将方程的一边配成完全平方式,然后两边开方;

  bb24ac公式法:x

  2a因式分解法:左边是两个因式的乘积,右边为零。3一元二次方程在实际问题中的应用

  4韦达定理:设x1,x2是方程ax2bxc0的两个根,那么有x1x2,x1x2第三章旋转1图形的旋转

  旋转:一个图形绕某一点转动一个角度的图形变换性质:对应点到旋转中心的距离相等;

  对应点与旋转中心所连的线段的夹角等于旋转角旋转前后的图形全等。

  2中心对称:一个图形绕一个点旋转180度,和另一个图

  形重合,则两个图形关于这个点中心对称;

  中心对称图形:一个图形绕某一点旋转180度后得到的

  图形能够和原来的图形重合,则说这个图形是中心对称图形;

  3关于原点对称的点的坐标第四章圆

  1圆、圆心、半径、直径、圆弧、弦、半圆的定义2垂直于弦的直径

  圆是轴对称图形,任何一条直径所在的直线都是它

  的对称轴;

  垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧。3弧、弦、圆心角

  在同圆或等圆中,相等的圆心角所对的弧相等,所

  baca对的弦也相等。

  4圆周角

  在同圆或等圆中,同弧或等弧所对的圆周角相等,都等

  于这条弧所对的圆心角的一半;

  半圆(或直径)所对的圆周角是直角,90度的圆周角

  所对的弦是直径。

  5点和圆的位置关系点在

  dr

  点在圆上d=r点在圆内d相等,这一点和圆心的连线平分两条切线的夹角。

  三角形的内切圆:和三角形各边都相切的圆为它的内切圆,

  圆心是三角形的三条角平分线的交点,为三角形的内心。

  7圆和圆的位置关系

  外离d>R+r外切d=R+r相交R-r第五章概率初步

  1概率意义:在大量重复试验中,事件A发生的频率某个常数p附近,则常数p叫做事件A的概率。

  2用列举法求概率

  一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=

  mnm稳定在n3用频率去估计概率

  初三数学上册知识点总结

  (三角形中位线的定理)

  三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

  (平行四边形的性质)

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分。

  (矩形的性质)

  ①矩形具有平行四边形的一切性质;

  ②矩形的四个角都是直角;

  ③矩形的对角线相等。

  正方形的判定与性质

  1、判定方法:

  1邻边相等的矩形;

  2邻边垂直的菱形;

  3对角线垂直的矩形;

  4对角线相等的菱形;

  2、性质:

  1边:四边相等,对边平行;

  2角:四个角都相等都是直角,邻角互补;

  3对角线互相平分、垂直、相等,且每长对角线平分一组内角。

  等腰三角形的判定定理

  (等腰三角形的判定方法)

  1、有两条边相等的三角形是等腰三角形。

  2、判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形简称:等角对等边。

  角平分线:把一个角平分的射线叫该角的角平分线。

  定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上

  标准差与方差

  极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值—最小值。

  计算器——求标准差与方差的一般步骤:

  1、打开计算器,按“ON”键,按“MODE”“2”进入统计SD状态。

  2、在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。

  3、输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。

  4、当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;

  5、标准差的平方就是方差。

  初三数学上册知识点总结

  第21章二次根式

  1、二次根式:一般地,式子叫做二次根式。

  注意:

  (1)若这个条件不成立,则不是二次根式;

  (2)是一个重要的非负数,即; ≥0。

  2、重要公式:

  3、积的算术平方根:

  积的算术平方根等于积中各因式的算术平方根的积;

  4、二次根式的乘法法则:。

  5、二次根式比较大小的方法:

  (1)利用近似值比大小;

  (2)把二次根式的系数移入二次根号内,然后比大小;

  (3)分别平方,然后比大小。

  6、商的算术平方根:,

  商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

  7、二次根式的除法法则:

  分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

  8、最简二次根式:

  (1)满足下列两个条件的二次根式,叫做最简二次根式,

  ①被开方数的因数是整数,因式是整式,

  ②被开方数中不含能开的尽的因数或因式;

  (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

  (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

  (4)二次根式计算的最后结果必须化为最简二次根式。

  9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

  10、二次根式的混合运算:

  (1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

  (2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

  第22章一元二次方程

  1、一元二次方程的一般形式:

  a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

  2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

  3。一元二次方程根的判别式:当ax2+bx+c=0

  (a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:

  Δ>0 <=>有两个不等的实根;

  4。平均增长率问题————————应用题的类型题之一(设增长率为x):

  (1)第一年为a ,第二年为a(1+x) ,第三年为a(1+x)2。

  (2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。

  第23章旋转

  1、概念:

  把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

  旋转三要素:旋转中心、旋转方面、旋转角

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的距离相等

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角

  3、中心对称:

  把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

  这两个图形中的对应点叫做关于中心的对称点。

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

  (2)关于中心对称的两个图形是全等图形。

  5、中心对称图形:

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  初三数学上册知识点总结

  三角形的外心定义:

  外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。

  外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

  三角形的外心的性质:

  1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;

  2、三角形的外接圆有且只有一个,即对于给定的三角形,其外心是的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;

  3、锐角三角形的外心在三角形内;

  钝角三角形的外心在三角形外;

  直角三角形的外心与斜边的中点重合。

  在△ABC中

  4、OA=OB=OC=R

  5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

  6、S△ABC=abc/4R

  初三数学上册知识点总结

  1二次根式:形如a(a0)的式子为二次根式;性质:a(a0)是一个非负数;

  a2aa0。

  2二次根式的乘除:ababa0,b0;

  aaa0,b0。bb3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。

  4海伦-秦九韶公式:S是三角形的面积,Sp(p)(pb)(pc),p为pabc。2第二章一元二次方程

  1一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。

  2一元二次方程的解法

  配方法:将方程的一边配成完全平方式,然后两边开方;

  bb24ac公式法:x2a因式分解法:左边是两个因式的乘积,右边为零。

  3一元二次方程在实际问题中的应用

  4韦达定理:设x1,x2是方程ax2bxc0的两个根,那么有x1x2,x1x2第三章旋转

  1图形的旋转旋转:一个图形绕某一点转动一个角度的图形变换性质:对应点到旋转中心的距离相等;

  对应点与旋转中心所连的线段的夹角等于旋转角旋转前后的图形全等。

  2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;

  中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;

  3关于原点对称的点的坐标第四章圆

  1圆、圆心、半径、直径、圆弧、弦、半圆的定义

  2垂直于弦的直径

  圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;

  垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧。

  3弧、弦、圆心角

  在同圆或等圆中,相等的圆心角所对的弧相等,所baca对的弦也相等。

  4圆周角

  在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;

  半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。

  5点和圆的位置关系点在dr点在圆上d=r点在圆内d相等,这一点和圆心的连线平分两条切线的夹角。

  三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。

  6圆和圆的位置关系

  外离d>R+r外切d=R+r相交R-r第五章概率初步

  1概率意义:在大量重复试验中,事件A发生的频率某个常数p附近,则常数p叫做事件A的概率。

  2用列举法求概率

  一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=mnm稳定在n3用频率去估计概率

  初三数学上册知识点总结

  第21章二次根式知识框图

  理解并掌握下列结论:

  (1)是非负数;(2);(3);

  I.二次根式的定义和概念:

  1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,√0=0

  2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。

  II.二次根式√ā的简单性质和几何意义

  1)a≥0;√ā≥0[双重非负性]

  2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式]3)√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论。

  IV.二次根式的乘法和除法

  1运算法则

  √a√b=√ab(a≥0,b≥0)

  √a/b=√a/√b(a≥0,b>0)

  二数二次根之积,等于二数之积的二次根。2共轭因式

  如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式。

  V.二次根式的加法和减法

  1同类二次根式

  一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。2合并同类二次根式

  把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

  3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并

  Ⅵ.二次根式的混合运算

  1确定运算顺序2灵活运用运算定律3正确使用乘法公式4大多数分母有理化要及时

  5在有些简便运算中也许可以约分,不要盲目有理化

  VII.分母有理化

  分母有理化有两种方法I.分母是单项式

  如:√a/√b=√a×√b/√b×√b=√ab/b

  II.分母是多项式要利用平方差公式

  如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多项式要利用平方差公式

  如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知识框图

  旋转的定义

  旋转对称中心

  大于360°)。

  把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种

  图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,

  也就是说:

  ①中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

  ②中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。

  中心对称图形

  正(2N)边形(N为大于1的正整数),线段,矩形,菱形,圆

  只是中心对称图形

  平行四边形等。第24章圆知识框图

  圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

  直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。

  两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。

  圆的平面几何性质和定理

  一有关圆的基本性质与定理

  ⑴圆的确定:不在同一直线上的三个点确定一个圆。

  圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

  ⑵有关圆周角和圆心角的性质和定理在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。一条弧所对的圆周角等于它所对的圆心角的一半。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  ⑶有关外接圆和内切圆的性质和定理

  ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

  ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。③S三角=1/2x△三角形周长x内切圆半径

  ④两相切圆的连心线过切点(连心线:两个圆心相连的线段)

  ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

  〖有关切线的性质和定理〗

  圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。

  切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

  切线的性质:

  (1)经过切点垂直于这条半径的直线是圆的切线。

  (2)经过切点垂直于切线的直线必经过圆心。

  (3)圆的切线垂直于经过切点的半径。

  切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。〖有关圆的计算公式〗

  1.圆的周长C=2πr=πd2.圆的面积S=πr^2;3.扇形弧长l=nπr/1804.扇形面积S=π(R^2-r^2)5.圆锥侧面积S=πrl

  第25章概率初步知识框图

  第26章二次函数

  知识框图

  定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  一般式:y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。顶点式:y=a(x-h)^2+k

  交点式(与x轴):y=a(x-x1)(x-x2)

  重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b)/4a)当-b/2a=0时,P在y轴上;当Δ=b-4ac=0时,P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要异号

  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数

  Δ=b-4ac>0时,抛物线与x轴有2个交点。Δ=b-4ac=0时,抛物线与x轴有1个交点。_______

  Δ=b-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b/4a}相反不变

  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax+c(a≠0)解析式:

  第27章相似知识框图

  相似三角形的认识

  对应角相等,对应边成比例的两个三角形叫做相似三角形。(similartriangles)。互为相似形的三角形叫做相似三角形

  相似三角形的判定方法

  根据相似图形的特征来判断。(对应边成比例,对应角相等)

  1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;

  (这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)

  2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;

  直角三角形相似判定定理

  1.斜边与一条直角边对应成比例的两直角三角形相似。

  2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。射影定理

  三角形相似的判定定理推论

  推论一:顶角或底角相等的那个的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。

  推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

  推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

  推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

  相似三角形的性质

  1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

  2.相似三角形周长的比等于相似比。3.相似三角形面积的比等于相似比的平方。

  相似三角形的特例

  能够完全重合的两个三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形状完全相同,相似比是k=1。

  全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。

  因此,相似三角形包括全等三角形。全等三角形的定义

  能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

  由此,可以得出:全等三角形的对应边相等,对应角相等。

  (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;三角形全等的判定公理及推论

  1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

  2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。由3可推到

  4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)

  5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)

  所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

  注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。A是英文角的缩写(angle),S是英文边的缩写(side)。全等三角形的性质

  1、全等三角形的对应角相等、对应边相等。

  2、全等三角形的对应边上的高对应相等。

  3、全等三角形的对应角平分线相等。

  4、全等三角形的对应中线相等。

  5、全等三角形面积相等。

  6、全等三角形周长相等。

  7、三边对应相等的两个三角形全等。(SSS)

  8、两边和它们的夹角对应相等的两个三角形全等。(SAS)9、两角和它们的夹边对应相等的两个三角形全等。(ASA)

  10、两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)

  11、斜边和一条直角边对应相等的两个直角三角形全等。(HL)全等三角形的运用

  1、性质中三角形全等是条件,结论是对应角、对应边相等。而全等的判定却刚好相反。

  2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

  3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。

  初三数学上册知识点总结

  单项式与多项式

  仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。

  单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。

  当一个单项式的系数是1或—1时,“1”通常省略不写。

  一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

  1、多项式

  有有限个单项式的代数和组成的式子,叫做多项式。

  多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

  单项式可以看作是多项式的特例

  把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

  在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

  2、多项式的值

  任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

  3、多项式的恒等

  对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。

  性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。

  性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。

  4、一元多项式的根

  一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。

  多项式的加、减法,乘法

  1、多项式的加、减法

  2、多项式的乘法

  单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

  3、多项式的乘法

  多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

  常用乘法公式

  公式I平方差公式

  a+ba—b=a^2—b^2

  两个数的和与这两个数的差的积等于这两个数的平方差。

  初三数学上册知识点总结

  字母表示数

  01、本节核心

  字母可以表示任何数!

  02、用什么样的字母表示数?

  26个字母任何一个其实都是可以的,因为用来表示任何一个数时,它只是需要一个符号而已。但是一般情况下,我们xxxx表示。

  03、字母表示数有何意义?

  可以简明地表达问题中的数量关系

  举个栗子~

  第一个,圆的半径可以表示为r,那么该圆的面积是Πr2,周长就是2Πr

  第二个,我们在第一章学的,棱柱,还记得吗?

  n棱柱,有n+2个面,2n个顶点,3n条

  04、用字母表示数要注意四点

  1、在同一个问题中,不同的量用不同的字母表示。比如说,在长方形中,如果长用a表示,宽就不能用a表示了,可以用b表示,不然就会引起混乱。

  2、在特定的情况下,有些字母表示的内容有它特定的意义。比如说,在计算面积和周长时,习惯用s表示面积,c表示周长,h表示高。

  3、用字母表示数时,数字和字母,字母和字母之间的乘号可以记作_·_或者省略不写。

  4、用字母表示数需要写单位名称时,如果是乘法和分数的形式,可以直接在后面写上单位名称,如果出现了+、—,请加上小括号再写单位。比如说,(a+5)米和5/a米的区别。

  代数式

  01、代数式的概念

  用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  注意:

  ①代数式中除了含有数、字母和运算符号外,还可以有括号;

  ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

  ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

  01、代数式的书写格式

  ①代数式中出现乘号,通常省略不写,如vt;

  ②数字与字母相乘时,数字应写在字母前面,如4a;

  ③带分数与字母相乘时,应先把带分数化成假分数;

  ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

  ⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。

  ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。

  定义:单项式和多项式统称为整式。

  ①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

  注意:

  1、单独的一个数或一个字母也是单项式;

  2、单独一个非零数的次数是0;

  3、当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。

  ②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

  整式的加减

  01、什么是同类项

  1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  2、注意:

  ①同类项有两个条件:a、所含字母相同;b、相同字母的指数也相同。

  ②同类项与系数无关,与字母的排列顺序无关;

  ③几个常数项也是同类项。

  02合并同类项法则

  把同类项的系数相加,字母和字母的指数不变。

  03去括号法则

  ①根据去括号法则去括号:

  括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

  ②根据分配律去括号:

  括号前面是“+”号看成+1,括号前面是“-”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。

  04添括号法则

  添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。

  05整式的运算:

  整式的加减法:(1)去括号;(2)合并同类项。

  初三数学上册知识点总结

  1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

  2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

  3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

  4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a=?0)根的判别式△=b2—4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。

  韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

  5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。

  6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

  7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

  用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

  反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

  归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

  8、等(面或体)积法:平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的效果。运用面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。

  用归纳法或分析法证明几何题,其困难在添置辅助线。等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,通过运算达到求证的结果。所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

  9、几何变换法:在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

  几何变换包括:(1)平移;(2)旋转;(3)对称。

  10、客观性题的解题方法:选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。

【初三数学上册知识点总结】上海花千坊相关的文章:

初三上册物理知识点总结04-04

初三数学全套知识点总结06-30

初二上册数学知识点总结02-05

高一数学上册基础知识点总结07-21

初三物理知识点总结11-03

五年级数学上册知识点总结07-18

初一数学上册北师大知识点总结03-16

五年级上册数学知识点总结01-16

初三数学上册教学计划04-04